ChartFire

FileMaker Plug-In Manual

Dacons

© 2010 Dacons LLP. All rights reserved.

This manual assumes that you have elementary knowledge of FileMaker.

This manual, as well as the software described in it, is furnished under a license and may not be copied, photocopied,
reproduced, translated, or converted to any electronic or machine-readable form in whole or in part without prior writ-
ten approval of Dacons LLP. Dacons assumes no responsibility or liability for any errors or inaccuracies that may
appear in this manual.

All trademarks and registered trademarks mentioned in this manual are the property of their respective owners.

Please send feedback to info@dacons.net

Website: http://www.dacons.net

October 28, 2010

CONTENTS

CON T EN T S et e et 3
FUNOCTION INDEX ..t 4
FUNCTION OVERVIEW .. 5
FUNCLION OVEIVIEW ...ttt e e e e e e e e e e e e e e eaeaeeeeeeeeeenennnnes 5
POSSIDIE SOIULIONS ...ttt e e e e e e e e e e e e aaeaaaeeeeeeeeeenennnnes 5
IN T RODU C T HON e 6
ADOUL thisS MaNUAL ... e e e e e e e e e e e e e e et e e e e e e eaan e eeaeees 6
SOftware reqQUIFEMENTSt e ettt et e e e e e e e e s e e e e e eaaaeaesaaannnennneeeeaaaeens 6
Installing the FileMaKer PIUG-iNoueiiiiiiiii e e e 7
HaNAS-0N ©XAMPIESottt e e e e e e e e e e e e e e e e e e aeeeeeeeeenenenaes 7
MURT-USEE SBHUDS ...ttt a e e e e e e e e e e e e e aaaaaaaeeeaeeeeennnnnnes 7
CH A P T E R e 8
How to use ChartFire fUNCHONS ... e e e e e 8
FUNCLON PArameters.... ..o e e e e e e e e e e e e e e e e e eeeeeeeeeenees 10
Required and optional parameterso eeeeaens 10
RESUIE COUBS ...ttt ettt e e e e e e e e e e e e eaaaaaaaaaeeeeeeeeennees 11
G H A P T EE R 2 ettt eea et 13
Create Chartt e ——————— 14
REtriEVE Chart . ..ot e e e e e e e e e e aaaaaaaeeeeeeeeeeeeaees 16
D =T1 10} VA O 4 -1 o SO PP PP PP PP UPPPPRP 16
CH A P T EE R B et eea et 18
Yo Lo I @4 o =1 o s SEUTSUPRRPN 18
o Lo I =T ©o] (o] SRR 19
o Lo = o= £ U 20
CH A P T ER A ettt 21
Yo (o 1 10 - | - 21
CH A P T EE R B et 22
Retrieve 1ast reSUIL COUE ... e e e e e e e e e e e e e e e e e eeeeeeeenens 22
REtrieVe PIUG-IN VEISIONooiiiiiiiiei ittt e e e e e e s e e e e e e e as 23

ReGISter the PIUG-iN ... e e e e e e e e e e 23

FUNCTION INDEX

CFire_CreateChart...... ... 14
CFire_GetChart.........oooie e 16
CFire_DestroyChartcoooiiiiiiiiii e 16
CFire_AddGraph ... 18
CFire_AddPIeCoOIOrSouueeiiiiiieee e 19
CFire_AddLabelsoooiiiee e 20
CFire_AddDatacooomiiiieee e 21
CFire_GetLastResultCode.cccoeee i, 22
CFire_GetVersionooouiueeiiiiiieee e eeeeeeeeees 23

CFire_RegiSterSessionoooiiiiiiiiiiiiiiiieeee e 23

FUNCTION OVERVIEW
ChartFire Features

ChartFire is an indispensable plug-in that lets you go beyond the data representation capa-
bilities of FileMaker. ChartFire provides customizable charts generation facilities. Each chart
is produced as a PNG or JPEG image, which can be stored within a container field, or ex-
ported to disk.

ChartFire can be used in both FileMaker and Runtime solutions.

Use ChartFire to enrich your solution with supreme charts, not seen in FileMaker before.

Function overview

* Create customizable “Pie”, “Bars” and “Lines” charts

* Create unlimited amount of charts

* Give your FileMaker application a visual data representation that goes beyond the text
information

Possible solutions

* Create a professional look for your database
* Use charts with Runtime solutions

INTRODUCTION
Getting Started

This chapter describes how to use this manual and provides all information you need to in-
stall the plug-in. In addition, you will see how to explore the powerful features of ChartFire
using the files that come with this plug-in.

About this manual

The manual is structured as to explain the plug-in functionality by facility sections.

Chapter 1 (Chapter 1, p. 8) explains how to use ChartFire functions with FileMaker. You
will learn about plug-in functions, parameters, and result codes.

Chapter 2 (Chapter 2, p.13) provides all information you need to create, render, and de-
stroy the chart.

Chapter 3 (Chapter 3, p.18) provides all information you need to create graphs and labels.

Chapter 4 (Chapter 4, p. 21) provides all information you need to fulfill the chart with data
values.

Finally, Chapter 5 (Chapter 5, p. 22) provides information about advanced plug-in functions
that let you retrieve result codes, configure the log engine and more.

Software requirements

ChartFire requires FileMaker 7 or later. The FileMaker editions Pro, Advanced/Developer
and Runtime are supported. The plug-in is shipped in two different file formats, one for Win-
dows (2000 and later) and one for Mac OS X (10.4 and later).

When mentioning “FileMaker”, this manual assumes FileMaker 7 or later.

Installing the FileMaker plug-in

Before installing the ChartFire plug-in, ensure you select the correct version from the down-
load package according to your operating system (Windows or Mac OS X).

Next, ensure that FileMaker is closed. Then copy the ChartFire plug-in for your operating
system in the Extensions folder which is located in the FileMaker application folder. Now,
please launch FileMaker.

Hands-on examples

After installing ChartFire, open the Quick Start file that comes with the download package.
The Quick Start file demonstrates some of the most powerful ChartFire features. Take
some time to explore the demo tour.

Continue reading this manual to find out how the features shown in the Quick Start file have
been implemented in FileMaker using ChartFire plug-in functions.

Multi-user setups

To use ChartFire functions in multi-user network solutions, the plug-in needs to be installed
on every computer that uses its functions. Due to the software architecture of FileMaker
Server, plug-ins cannot operate on the server side.

CHAPTER 1
ChartFire Basics

This chapter explains how to use ChartFire functions with FileMaker. After reading this
chapter advance to any of the other chapters of this manual that provide the information you
currently require.

How to use ChartFire functions

Since ChartFire is a FileMaker plug-in, so-called external functions are used to trigger the
plug-in from a FileMaker database solution. They are called external functions because the-
se functions are provided by a plug-in and thus are not part of the actual FileMaker applica-
tion. In order to use the external functions provided by a plug-in it must be installed and en-
abled in the FileMaker application preferences.

To access external functions provided by a plug-in the FileMaker calculation editor is used.
The calculation editor is provided by the FileMaker editions Pro and Advanced (Developer
in version 7). FileMaker shows the calculation editor dialog window whenever a calculation
has to be defined (e.g. for calculated fields, validation calculations etc). In most cases you
will invoke ChartFire functions from a script. The easiest bridge between scripts and the
calculation editor that invokes plug-in functions is a script step called Set Field. Add a Set
Field script step to your script to start using ChartFire.

Next, specify the target field which will contain the result of the plug-in operation. There are
two types of ChartFire results. Some ChartFire functions return content (such as a Chart
image) which can be stored directly in a FileMaker field. Other functions do not return con-
tent. Instead, result codes are provided by these functions that tell you if an operation suc-
ceeded or failed for a certain reason. Click the Specify button provided by the Set Field
script step in ScriptMaker and define the target field of your plug-in command depending on
the type of result. Refer to the functions reference (starting on p.13) for further details about
the results returned by each plug-in function.

In the following figure a global field called pluginResult (defined in the table Tests) has been
specified as result field. In most cases, you will choose a global field as result field if the
plug-in function invoked does not return content but only a result code. If content is returned
by a function choose an appropriate non-global field instead to store results in a database
record.

¢ Setfield [Tests :pluginResult]

Script Step Options
@ Specify target field (Specify...)

Calculated result: (Specify...)

Set Field command in ScriptMaker

If you are working with FileMaker 8 or later you will prefer using script variables over global
fields to store non-content plug-in results. Thus, use the script step Set Variable instead of
Set Field for plug-in functions that do not return content.

Click the Specify button (the second Specify button when using Set Field) to open the cal-
culation editor.

In the top right corner of the calculation editor dialog you find a drop-down menu called
View. Switch to the section External functions. All ChartFire functions are listed in the sec-
tion ChartFire. If the ChartFire functions do not appear in the list, the plug-in is not installed
correctly or it is disabled in the FileMaker application preferences. In this case leave the
calculation editor and check that ChartFire is installed as described earlier and that it is en-
abled in the FileMaker application preferences.

Operators View: ' External functions —3—]
. - - - N (= ra O
¥ CFire_AddData(chartName; grap...

- il > CFire_AddGraph(chartName; gra...
T | < CFire_AddLabels(chartName; lab...
i CFire_AddPieColors(chartName; ...

0 b+ |s CFire_CreateChart(type; name {; ...
N— Ne—

and W CFire_DestroyChart(chartName)...
or CFire_CetChart(chartName; for...

A A
xor 3 CFire_RegisterServer(userName, ... 3

ChartFire functions in the Calculation Editor

Double-click on the ChartFire function in the list, which you would like to use. The function
is copied to your calculation including a Quick Reference text that describes the meaning of
the selected function and its parameters. To use the function, parameter values have to be
specified.

Function parameters

Most ChartFire functions provide parameters that specify details of a function call. Many of
these functions have several parameters. After copying a function to the text box of the cal-
culation editor, FileMaker shows the name of the plug-in function that has been selected
and a text label for each parameter of the function.

The following example shows the ChartFire function CFire AddLabels that has been
added to the calculation editor. This function attaches the (set of) labels to the chart object.

CFire AddLabels (chartName; labels)

After copying the function to your calculation, you need to define a value for each parame-
ter. This can be hard-coded values (i.e. a specific chart name for the chartName parame-
ter) enclosed in quotation marks. As in every calculation you may also specify dynamic val-
ues represented by database field names or script variables that hold the information to be
passed to the plug-in as parameter value.

Required and optional parameters

Most functions have some parameters that are required and some that are optional. When
invoking a ChartFire function you have to pass a value for all required parameters. Optional
parameters can be skipped. If no value is passed to the plug-in for an optional parameter
the default value for this parameter will be used.

Required parameters are listed in the beginning and optional parameters are listed at the
end of a function call. This allows you to omit optional parameters that you would not like to
use in your function call.

After copying a function to the calculation editor you will see optional parameters enclosed
in curly braces { }. To skip an optional parameter use an empty text value represented by
two quotation marks in the text editor "". Optional parameters at the end of a function call
can be skipped completely. After specifying parameter values you need to remove any curly
braces from the function call.

In the following example the function CFire AddGraph is invoked. Chart and graph names
must be specified because parameters chartName and graphName are required.
However, title and display color parameters are not specified. Since parameters title and
displayColor are optional, and there is no further parameter value required for this
function call, it can be omitted completely:

CFire AddGraph ("My Chart"; "My Graph")

The plug-in will choose the default value for parameters title and displayColor (empty
titte and random color).

Result codes

As mentioned earlier, ChartFire functions can be separated into two groups. Content func-
tions return values that are stored in database fields (using Set Field script step). If a con-
tent function fails, an empty result is returned. To find out why a content function failed in-
voke the function CFire GetLastResultCode. It returns a result code and a short de-
scription of the error. The second group of ChartFire functions is called non-content func-
tions. Non-content functions return a result code directly. However, you may also invoke
CFire GetLastResultCode to check the result code of non-content functions.

You can evaluate result codes in your script and perform certain activities (e.g. show an er-
ror message to the user). To check in ScriptMaker if the last ChartFire operation failed, use
the following calculation in an if condition:

Left (CFire GetLastResultCode; 1) = "-"

The following conditions checks for a specific error:

Left (CFire GetLastResultCode; 4) = "-007"

A list of all result codes and their meanings follows on the next page.

Result Code | Description

000 (OK) Function completed successfully, no errors occurred

-001 (Reserved) Result code reserved

-002 (Invalid registration information) Enter registration exactly as supplied
003 (Incorrect option) One of the parameters passed in external

function has incorrect value

-004 (Reserved) Result code reserved

-005 (Unknown error) Contact the Dacons Support at http://www.dacons.net/support

-006 (File i/o error) Plug-in was unable to write the log file

CHAPTER 2
Create, Retrieve and Destroy Charts

ChartFire plug-in enables you to create an unlimited amount of chart images. After chart
image is created and obtained, it should be destroyed. This chapter explains how to create
and destroy charts accordingly.

A basic chart construction procedure consists of several steps. First of all the

"CFire CreateChart" function should be used, to define the general parameters for
the new chart. On this stage the chart does not include any data, and therefore can't be
displayed. The next step is to add the necessary graphs. In case if the chart has a "bars"
or "lines" style, multiple graphs can be created using the "CFire AddGraph" func-
tion. When the graphs are ready, it is time to add the /abels and data values using the
"CFire AddLabels™ and "CFire AddData" functions. As soon as the chart has at
least one graph, label, and at least one data value, the plug-in is ready to render the chart.
Chart rendering is invoked using the "CFire GetChart" function, which should return an
image object as a function call result. After the chart image has been successfully rendered
and retrieved, it should be destroyed using the "CFire DestoryChart™ function, in or-
der to free the memory resources.

Any color specification should be supplied within an RGB format, for example:
192,255,192

Hexadecimal format is supported as well, for example:

COFFCO

Single function call may combine different color formats.

Create Chart

The function CFire_ CreateChart creates a chart, based on the parameters specified.

In case if a "pie" chart is created, there should be only one graph used, considering that
pie-chart represents a percentage split of a single volume.

In case if a "bars" or "1ines" chart is created, the user may create unlimited amount of
graphs, which shell be drawn in a sequence of creation.

The plug-in does not limit the maximum size of the picture, however if no size is provided,
the plug-in will use a 640x480 dimensions.

In case if no background color is specified, the plug-in will use transparency, which is
supported by PNG image format. However, in case if a JPEG format is used, transparent
areas will be converted to white color.

Syntax:

CFire CreateChart (type; name {; format; pictureWidth;
pictureHeight; bkColor; title; titleFontName; titleFontSize;
titleFontColor; labelPosition; labelFontName; labelFontSize;
labelFontColor; historyPosition; historyFontName; historyFontSize;
historyFontColor; showTags; tagsBkColor; showGrid})

Parameters:
type — Type of the Chart to be created. Parameter values can be "pie 24", "pie 34",

"bars 2d", "bars 3d","lines", "lines soft",and "lines dotted".

name — The name of the chart object to be created. This name is used with other function
calls, in order to specify the object name to be addressed, and therefore must be unique.

format — Format of the picture to be used. Parameter values can be "png" (default) and
"jpeg"-

pictureWidth — The width of the image in pixels. Default value is "640".
pictureHeight — The height of the image in pixels. Default value is "480".

bkColor — Background color in RGB format. Empty value stands for a transparent back-
ground.

title — Chart title to display. Default value is empty.

titleFontName — Fontname to be applied, if available, to render the chart title. If empty,
system default font name will be used.

titleFontSize — Font size to be applied. If empty, system default font size will be used.

titleFontColor — Font color to be applied in RGB format. If empty, black color will be
used.

labelPosition — Labels axis positioning. Parameter values can be "auto" (default),

"horizontal™, and "vertical".

labelFontName — Font name to be applied, if available, to render the chart labels. If emp-
ty, system default font name will be used.

labelFontSize — Font size to be applied. If empty, system default font size will be used.

labelFontColor — Font color to be applied in RGB format. If empty, black color will be
used.

historyPosition — History location. Parameter values can be "1eft", and "right"
(default).

historyFontName — Fontname to be applied, if available, to render the chart history. If
empty, system default font name will be used.

historyFontSize — Fontsize to be applied. If empty, system default font size will be
used.

historyFontColor — Font color to be applied in RGB format. If empty, black color will be
used.

showTags — Include indication tags ("pie" charts only). Parameter values can be
"percentage", "values" and "off" (default).

tagsBkColor — Colorto be applied as a background color for pie tags information bars
("pie" charts only). In case if no color is specified, a common tooltip color will be used.

showGrid — Show grid for ("bars" or "1ines" charts only). Parameter values can be
"showGrid" (default) and "hideGrid".

Result:
Returns result code (see result code table).

Example:
In the following example a simple "1 ines" charts is created:

CFire CreateChart ("lines"; "My Chart")

For this example, the following result should be returned:

000 (OK)

Retrieve Chart

The function CFire_GetChart renders the chart, and returns an image object in request-
ed format.

Syntax:
CFire GetChart (chartName)

Parameters:
chartName — Name of the chart object to be retrieved.

Result:
Returns an image object.

If the errors occur an empty result is returned. Invoke the function
CFire GetLastResultCode for details in such a case.

Example:
In the following example renders and retrieves a chart named "My Chart":

CFire GetChart ("My Chart")

For this example, an image result shell be returned.

Destroy Chart

The function CFire DestoryChart destroys the chart, and any associated data.

Syntax:
CFire DestoryChart (chartName)

Parameters:
chartName — Name of the chart object to be destroyed.

Result:
Returns result code (see result code table).

Example:
In the following example destroys a chart named "My Chart":

CFire DestoryChart ("My Chart")
For this example, the following result should be returned:

000 (OK)

CHAPTER 3
Graphs and Labels

Each separate data series represented on chart is called "Graph". In order to add each
graph, a single "CFire AddGraph" function call is required.

Multiple graphs can be created only for "bars" and "1ines" charts. Where "pie" chart re-
quires only one graph.

Step markers available for "bars" and "1ines" charts are called "Labe1s". Labels are
common for all graphs, as they represent a “milestone” for each data series.

Add Chart

The function CFire_AddGraph adds a new graph to the chart. In case if the chart has a
"pie" type, a single function call is permitted. Any subsequent function call will return an er-
ror.

Syntax:
CFire AddGraph (chartName; graphName {; title; displayColor})

Parameters:
chartName — The name of the chart object to be updated.

graphName - The name of the graph object to be created. This name is used with other
function calls, in order to specify the object name to be addressed, and therefore must be
unique.

title — Graph title to be displayed within the History area. In case if this parameter is
empty, only a color indication will be used.

displayColor — Color to be applied to render this graph. In case if this parameter is
empty, a random color will be used. This parameter is meaningful for "bars" or"1ines"
charts only. In order to set a custom color for each "pie" peace, a

"CFire AddPieColors" function should be used.

Result:
Returns result code (see result code table).

Example:
In the following example we shell add a new graph, named "First Graph", to the chart
named "my chart":

CFire AddGraph ("My Chart"; "First Graph")
For this example, the following result should be returned:

000 (OK)

Add Pie Colors

The function CFire AddPieColors adds a series of custom colors to the "pie" chart,
separated by carriage return. Subsequent calls will also add the colors to the available set.
Therefore the user may either add the full set of color, separated by carriage return, within a
single function call, or perform a series of function calls, adding a single color per call.

In case if a graph will contain more items then custom colors available, the plug-in will gen-
erate a random color for each item that is missing a custom color specification.

This function is meaningful for "pie" charts only.

Syntax:
CFire AddPieColors (chartName; color)

Parameters:
chartName — The name of the chart object to be updated.

labels — Color value to be added, or a set of color values, separated by carriage return.

Result:
Returns result code (see result code table).

Example:
In the following example we shell add two colors to the chart named "My Chart":

CFire AddLabels ("My Chart"; "127,145,2409247,111,110")
For this example, the following result should be returned:

000 (OK)

Add Labels

The function CFire AddLabels adds a series of labels to the chart, separated by car-
riage return. Subsequent calls will also add the labels to the available set. Therefore the us-
er may either add the full set of labels, separated by carriage return, within a single function
call, or perform a series of function calls, adding a single label per call.

This function is meaningful for "bars" or "1ines" charts only.

Syntax:
CFire AddLabels (chartName; labels)

Parameters:
chartName — The name of the chart object to be updated.

labels — Label name to be added, or a set of labels, separated by carriage return.

Result:
Returns result code (see result code table).

Example:
In the following example we shell add three labels to the chart named "My Chart":

CFire AddLabels ("My Chart"; "First{SecondqThird")
For this example, the following result should be returned:

000 (OK)

CHAPTER 4
Data

In order to render the chart values properly, each record value should be attached to ap-
propriate graph, using the "CFire AddData" function.

Add Data

The function CFire_AddData adds a new data value to the chart graph.

Syntax:
CFire AddData (chartName; graphName; data {; options })

Parameters:
chartName — Name of the chart object, to be updated.

graphName — Name of the graph object, to be updated.

data — Numeric data to be applied. This function may accept a series of values, separat-
ed by carriage return, or can be triggered sequentially, where each call adds a value (or set
of values, separated by carriage return) to the graph.

options - This parameter can be used to highlight a particular data item for the "pie"
charts only. Parameter values can be "exploded" or empty (default).

Result:
Returns result code (see result code table).

Example:
In the following example we shell add a single value, to the chart named "My Chart", and
graph named "My Graph":

CFire AddbData ("My Chart"; "My Graph"; 10)
For this example, the following result should be returned:

000 (OK)

CHAPTER 5
Additional Functions

ChartFire provides additional plug-in functions that are described in this chapter. These
functions enable you to retrieve result codes, check the exact version number of the plug-in
installed and unlock the trial version using with a registration name and a registration code
from script so that no end-user interaction is required to unlock a trial version.

Retrieve last result code

The function CFire_GetLastResultCode returns the result code of the last ChartFire
function that has been invoked. Please refer to p. 12 for a table of all result codes.

Syntax:
CFire GetLastResultCode

Parameter:
No parameter needed.

Parameter:
This function returns the result code of the last plug-in function that has been invoked prior
to CFire GetLastResultCode.

Result:

The result code for the last plug-in operation is returned together with a short description. If
the result returned is empty no plug-in function been invoked prior to

CFire GetLastResultCode.

Example:

The function CFire GetChart renders and returns a chart image. It does not return error
codes. If an error occurs, this function returns an empty result. In the following example, the
specified parameter is incorrect:

CFire GetChart ("Unknown Chart")

Since mandatory parameter value is incorrect (assuming that "Unknown Chart™ has nev-
er been created), an empty result is returned. To find out why the function
CFire GetChart failed the function CFire GetLastResultCode is invoked

CFire GetLastResultCode

In this example case it returns:

-003 (Incorrect Option)

Retrieve plug-in version

The function CFire_GetVersion returns the version of the installed ChartFire plug-in.
Use this function to check if the plug-in is installed when your database solution starts
(start-up script). The version information provided by this function can also be used for the
AutoUpdate plug-in which pushes updated versions of other plug-ins to all FileMaker net-
work clients automatically. Review the FileMaker documentation for more information about
the AutoUpdate plug-in.

Syntax:
TFire GetVersion ({ control })

Parameters:

control — This parameter is optional. It can be used to customize the content returned by
the plug-in function. Leave this parameter empty to retrieve all of the following items. To re-
trieve only a specific version information item, set this parameter to one of the following val-
ues: "version" returns the exact version of the plug-in installed. In most cases you will
pass this value to the plug-in to retrieve the version number. "product" returns the name
of the product. "platform" returns the operating system the plug-in is running on and
"copyright" returns copyright information of the plug-in.

Result:
This function returns the plug-in version description including all items specified by the
control parameter.

Register the plug-in

To remove all trial limitations from the plug-in it has to be registered using the registration
data you receive from Dacons after purchasing a ChartFire license. The plug-in can be reg-
istered manually using the preferences dialog (Go to: FileMaker Application Preferences »
Plug-Ins » ChartFire).

To avoid manual plug-in registration when shipping your database solution to a client or dis-
tribute a FileMaker Runtime application with ChartFire you can also register the plug-in from
the start-up script of your solution by invoking the function CFire RegisterSession with
your registration data. This function has to be invoked prior to any other function. Note that

registration data from script will not be stored so registration from script has to be invoked
every time a solution starts.

Syntax:
CFire RegisterSession (username ; userCode)

Parameters:
userName — Sets the user name you receive from Dacons after purchasing a ChartFire li-

cense.

userCode — Use this parameter to pass the registration code to the plug-in which you re-
ceive from Dacons after purchasing a ChartFire license.

Result:

This function returns a result code which tells you if the operation succeeded or if errors oc-
curred. Please contact the Dacons Support at http://www.dacons.net/support if you registra-
tion code is rejected for any reason.

