
Overview 1

© 2013 Enter your company name

1 Overview

Universal Data Access Components (UniDAC) is a powerful library of nonvisual
cross-database data access components for Delphi, C++Builder, and Lazarus (Free
Pascal). The UniDAC library is designed to help programmers develop faster and
cleaner cross-database applications. UniDAC is a complete replacement for standard
database connectivity solutions and presents an efficient native alternative to the
Borland Database Engine and dbExpress for access to Oracle, SQL Server, MySQL,
InterBase, Firebird, SQLite, DB2, Microsoft Access, Advantage Database Server,
Adaptive Server Enterprise, DBF, NexusDB, and other databases (using ODBC
provider).
UniDAC is based on the well-known Data Access Components from Devart such as
ODAC, SDAC, MyDAC, IBDAC, PgDAC and LiteDAC. We have joined the experience
of long-term successful development into one great product which provides unified
access to popular databases such as Oracle, Microsoft SQL Server, MySQL,
InterBase, Firebird, SQLite, DB2, Microsoft Access, Advantage Database Server,
Adaptive Server Enterprise, DBF, NexusDB and other databases (using ODBC
provider).
The UniDAC library is actively developed and supported by Devart Team. If you
have questions about UniDAC, email the developers at unidac@devart.com or visit
UniDAC online at http://www.devart.com/unidac/.

Advantages of UniDAC Technology

UniDAC is very convenient in setup and usage. It provides transparent server-
independent interface for working with different databases. Selected database
provider ensures the best way to perform operations on the server.

Universal Data Access

UniDAC provides transparent server-independent interfaces for working with
different databases, and lets you change the client engine for specific server type
just by changing single connection option. It means that you can easily switch
between database servers in your cross-database UniDAC-based application.

Server-Aware Providers

UniDAC chooses the best way specific to the server to perform most operations.
Every UniDAC data provider uses server-specific native connectivity. All operations
with data are performed by providers automatically considering peculiarities of the
selected database server.

Optimized Code

The goal of UniDAC is to enable developers to write efficient and flexible database
applications. The UniDAC library is implemented using advanced data access
algorithms and optimization techniques. Classes and components undergo
comprehensive performance tests and are designed to help you write high-
performance, lightweight data access layers.

Compatibility with Other Connectivity Methods

The UniDAC interface retains compatibility with standard VCL data access
components like BDE. Existing BDE-based applications can be easily migrated to
UniDAC and enhanced to take advantage of server-specific features.

http://www.devart.com/odac/
http://www.devart.com/sdac/
http://www.devart.com/mydac/
http://www.devart.com/ibdac/
http://www.devart.com/pgdac/
http://www.devart.com/litedac/
mailto:support@devart.com
http://www.devart.com/unidac/

Universal Data Access Components2

© 2013 Enter your company name

Development and Support

UniDAC is a cross-database connectivity solution that has been actively developed
and supported. UniDAC comes with full documentation, demo projects, and fast
(usually within one business day) technical support by the UniDAC development
team. Find out more about how to get help or submit feedback and suggestions to
the UniDAC development team in the Getting Support topic.
A description of the UniDAC components is provided in the Component List.

Key Features
 Universal access to different database servers
 Support for most popular databases
 Full support for the latest server versions
 Support for the latest IDE versions
 VCL, LCL and FMX versions of library available
 High performance
 Easy to deploy
 Support of all standard and third-party data-aware controls
 Advanced connection management
 Flexible data updating
 UniScript component to execute scripts
 UniSQL for writing server-independent queries
 Ability of monitoring commands execution
 Advanced connection pooling
 Unicode and national char sets support
 Includes database-independent data storage
 CachedUpdates operation mode
 Local sorting and filtering by calculated and lookup fields
 local master/detail relationship
 Ability to retrieve metadata information
 Support for using macros in SQL
 Customizable connection dialog
 Advanced design-time editors
 A large amount of helpful demo projects
 Annual UniDAC Subscription with Priority Support
 Licensed royalty-free per developer, per team, or per site

The full list of UniDAC features are available in the Features topic.

How does UniDAC work?

UniDAC consists of two constituents. The first constituent is the general UniDAC
Engine that provides unified programming interface for developers. The second
constituent is the data access layer which consists of data access providers. These
providers are intended for interacting between UniDAC Engine and database
servers. Each data provider works with one specific database server. General
UniDAC structure is presented below:

Overview 3

© 2013 Enter your company name

General UniDAC structure

There are two ways to install data access providers. The first way is to install the
UniDAC Professional or UniDAC Trial edition. In this case all available providers are

Universal Data Access Components4

© 2013 Enter your company name

installed. The second way is to install UniDAC Engine with the UniDAC Standard
edition, and required data access providers with Data Access Components such as
ODAC, SDAC, MyDAC, IBDAC, and PgDAC. Each DAC installs the corresponding data
access provider for UniDAC. However, there is a minor difference between providers
installed with UniDAC Professional and providers installed with DACs. Providers
installed with UniDAC Professional involve all server-specific functionality, when
providers installed with DACs are just wrappers on DAC libraries. If there are both
providers for a database server installed, the provider installed with DAC will be
used.

© 1997-2013 Devart. All Rights Reserved.

2 Editions

Universal Data Access Components comes in two editions: Standard and
Professional.
The Standard edition includes the UniDAC common engine, but does not include
any data providers. UniDAC Standard Edition supports only the following data
providers: Oracle, SQL Server, MySQL, InterBase (Firebird), and PostgreSQL, which
are installed by ODAC, SDAC, MyDAC, IBDAC, and PgDAC correspondingly. UniDAC
Standard Edition is a cost-effective solution for those database application
developers who need only several of supported data providers and already have (or
are going to have) some of DACs.
The Professional edition shows off the full power of UniDAC, including UniDAC
Standard Edition with support for the following data access providers: Oracle, SQL
Server, MySQL, InterBase/Firebird/Yaffil, PostgreSQL, SQLite, NexusDB, Access,
Advantage, ASE, DB2, DBF, and other databases (using ODBC provider). In
addition, UniDAC Professional Edition includes the DataSet Manager tool which is
intended to organize datasets in your application.
You can get Source Access to the UniDAC Professional Edition by purchasing the
special UniDAC Professional Edition with source code. The Professional Edition with
source code includes the source code for all component classes. The source code of
DataSet Manager is not distributed. The source code of Oracle Direct mode is
supplied as precompiled packages.
The matrix below compares features of UniDAC editions. The detailed list of all
UniDAC features you can find here.

UniDAC Edition Matrix

Features
Profe
ssion
al

Stand
ard

Data Access Components

Editions 5

© 2013 Enter your company name

Base Components
TUniConnection
TUniEncryptor
TUniQuery
TUniSQL
TUniTable
TUniStoredProc
TUniUpdateSQL
TUniDataSource

+ +

Script Executing
TUniScript

+ +

Transactions managing
TUniTransaction

+ +

Fast data loading into the server
TUniLoader

+ *

DataBase Specific Components

Advanced connection dialog
TUniConnectDialog

+ +

Messaging between sessions and applications
TUniAlerter

+ *

Obtaining metainformation about database
objects
TUniMetaData

+ *

Storing a database as a script
TUniDump

+ *

Data Base Activity Monitoring

Monitoring of per-component SQL execution
TUniSQLMonitor

+ +

Additional Components

Data storing in memory table
TVirtualTable

+ +

Advanced DBGrid with extended functionality
TCRDBGrid

+ +

Records transferring between datasets
TCRBatchMove

+ -

Providers

Universal Data Access Components6

© 2013 Enter your company name

UniDAC data providers for:
Oracle
SQL Server
MySQL
InterBase/Firebird
PostgreSQL
SQLite
NexusDB
ODBC
Access
Advantage
ASE
DB2
DBF

+ -

Design-Time Features

Enhanced component and property editors + +

Migration Wizard + +

DataSet Manager + -

Cross IDE Support

Lazarus and Free Pascal Support ** -

* Using these components is possible only if they are included to the used data
provider.

**

 Available only in editions with source code.

©

 1997-2013 Devart. All Rights Reserved.

3 Getting Started

This page contains a quick introduction to setting up and using the Universal Data
Access Components library. It gives a walkthrough for each part of the UniDAC
usage process and points out the most relevant related topics in the documentation.
 What is UniDAC?
 How does UniDAC work?
 Installing UniDAC.
 Working with the UniDAC demo projects.
 Compiling and deploying your UniDAC project.
 Using the UniDAC documentation.
 How to get help with UniDAC.

What is UniDAC?

Universal Data Access Components (UniDAC) is a component library that provides
connectivity to Oracle, SQL Server, MySQL, InterBase, Firebird, PostgreSQL, SQLite,
DB2, Microsoft Access, Advantage Database Server, Adaptive Server Enterprise,

Getting Started 7

© 2013 Enter your company name

DBF, NexusDB, and other databases (using ODBC provider) for Delphi, C++Builder
and Lazarus (FPC), and helps you develop fast cross-database applications with
these environments.
Many UniDAC classes are based on VCL, LCL and FMX classes and interfaces.
UniDAC is a complete replacement for Borland Database Engine, provides native
database connectivity, and is specifically designed as a universal interface to access
different kinds of databases.
An introduction to UniDAC is provided in the Overview section.
A list of the UniDAC features you may find useful is listed in the Features section.
An overview of the UniDAC component classes is provided in the Components List
section.

Installing UniDAC

To install UniDAC, complete the following steps.
1.Choose and download the version of the UniDAC installation program that is

compatible with your IDE. For instance, if you are installing UniDAC 1.00, you
should use the following files:

For BDS 2006 and Turbo - unidac100d10*.exe
For Delphi 7 - unid100d7*.exe

For more information, visit the the UniDAC download page.
2.Close all running IDEs.
3.Launch the UniDAC installation program you downloaded in the first step and

follow the instructions to install UniDAC.

By default, the UniDAC installation program should install compiled UniDAC libraries
automatically on all IDEs.
To check if UniDAC has been installed properly, launch your IDE and make sure that
a UniDAC page has been added to the Component palette and that a UniDAC menu
was added to the Menu bar.
If you have bought UniDAC Standard Edition with Source Code or UniDAC
Professional Edition with Source Code, you will be able to download both the
compiled version of UniDAC and the UniDAC source code. The installation process
for the compiled version is standard, as described above.The UniDAC source code
must be compiled and installed manually. Consult the supplied ReadmeSrc.txt file
for more details.
To find out what gets installed with UniDAC or to troubleshoot your UniDAC
installation, visit the Installation topic.

Working with the UniDAC demo projects

The UniDAC installation package includes a number of demo projects that
demonstrate UniDAC capabilities and use patterns. The UniDAC demo projects are
automatically installed in the UniDAC installation folder.
To quickly get started working with UniDAC, launch and explore the introductory
UniDAC demo project, UniDACDemo, from your IDE. This demo project is a
collection of demos that show how UniDAC can be used. The project creates a form
which contains an explorer panel for browsing the included demos and a view panel
for launching and viewing the selected demo.

UniDACDemo Walkthrough
1.Launch your IDE.
2.Choose File | Open Project from the menu bar
3.Find the UniDAC directory and open the UniDACDemo project. This project

http://info.borland.com/devsupport/bde/
http://www.devart.com/unidac/download.html

Universal Data Access Components8

© 2013 Enter your company name

should be located in the Demos\UniDACDemo folder.

For example, if you are using Borland Developer Studio 2006, the demo
project may be found at

\Program Files\Devart\UniDAC for Delphi 2006\Demos\Win32
\UniDACDemo\UniDACDemo.bdsproj

4.Select Run | Run or press F9 to compile and launch the demo project.
UniDACDemo should start, and a full-screen UniDAC Demo window with a
toolbar, an explorer panel, and a view panel will open. The explorer panel will
contain a list of all demo sub-projects included in UniDACDemo, and the view
panel will contain an overview of each included demo.

At this point, you will be able to browse through the available demos, read
their descriptions, view their source code, and see the functionality provided
by each demo for interacting with a server. However, you will not be able to
actually retrieve data from a server or execute commands until you connect to
the database.

5.Click on the "Connect" button in the UniDACDemo toolbar. A Connect dialog
box will open. Select the required provider from the list, and enter the
connection parameters to connect to your server, and click "Connect" in the
dialog box. Set of connection parameters depends on the selected provider.

Now you have a fully functional interface to your server. You will be able to go
through the different demos, to browse tables, create and drop objects, and
execute commands.

Warning! All changes you make to the database you are connected to,
including creating and dropping objects used by the demo, will be
permanent. Make sure you specify a test database in the connection step.

6.Click on the "Create" button to create all objects that will be used by
UniDACDemo. If some of these objects already exist in the database you have
connected to, an error with the error message like the following will appear.

"An error has occurred: ORA00955: name is already being used by an
existing object. ... Ignore this exception?"

This is a standard warning from the object execution script. Click "Yes to All"
to ignore this message. UniDACDemo will create the UniDACDemo objects on
the server you have connected to.

7.Choose a demo that demonstrates an aspect of working with UniDAC that you
are interested in, and play with the demo frame in the view window on the
right. For example, to find out more about how to work with TUniTable
component, select the Table demo from the "Working with Components"
folder. A simple table browser will open in the view panel which will let you
open a table in your database by specifying its name and clicking on the
"Open" button.

8.Click on the "Demo source" button in the UniDACDemo toolbar to find out how
the demo you have selected was implemented. The source code behind the
demo project will appear in the view panel. Try to find the places where
UniDAC components are used to connect to the database.

9.Click on the "Form as text" button in the UniDACDemo toolbar to view the
code behind the interface to the demo. Try to find the places where UniDAC
components are created on the demo form.

10.Repeat these steps for other demos listed in the explorer window. The
available demos are organized in three folders.

Working with components
A collection of projects that show how to work with the basic UniDAC
components.

Getting Started 9

© 2013 Enter your company name

General demos
A collection of projects that show off the UniDAC technology and
demonstrate some ways of working with data.
Server-specific demos
A collection of projects that demonstrate how to incorporate features of
specific database servers.

11.When you are finished working with the project, click on the "Drop" button in
the UniDACDemo toolbar to remove all schema objects added in Step 6.

Other UniDAC demo projects

UniDAC is accompanied by a number of other demo projects. A description of all
UniDAC demos is located in the Demo Projects topic.

Compiling and deploying your UniDAC project

Compiling UniDAC-based projects

By default, to compile a project that uses UniDAC classes, your IDE compiler needs
to have access to the UniDAC dcu (obj) files. If you are compiling with runtime
packages, the compiler will also need to have access to the UniDAC bpl files. All
appropriate settings for both these scenarios should take place
automatically during the installation of UniDAC. You should only need to
modify your environment manually if you are using one of the UniDAC editions that
comes with source code - UniDAC Professional Edition with Source Code or UniDAC
Standard Edition with Source Code.
You can check that your environment is properly configured by trying to compile
one of the UniDAC demo projects. If you have no problems compiling and launching
the UniDAC demos, your environment has been properly configured.
For more information about which library files and environment changes are needed
for compiling UniDAC-based projects, consult the Installation topic.

Deploying UniDAC-based projects

To deploy an application that uses UniDAC, you will need to make sure the target
workstation has access to the following files.
 The Client software, if connecting not in the Direct mode.
 The UniDAC bpl files, if compiling with runtime packages.
 The UniDAC assembly files, if using VCL for .NET components.

If you are evaluating deploying projects with UniDAC Trial Edition, you will also
need to deploy some additional bpl files with your application even if you are
compiling without runtime packages. As another trial limitation for C++Builder,
applications written with UniDAC Trial Edition for C++Builder will only work if the C
++Builder IDE is launched. More information about UniDAC Trial Edition limitations
is provided here.
A list of the files which may need to be deployed with UniDAC-based applications is
included in the Deployment topic.

Using the UniDAC documentation

The UniDAC documentation describes how to install and configure UniDAC, how to
use UniDAC Demo Projects, and how to use the UniDAC libraries.
The UniDAC documentation includes a detailed reference of all UniDAC components
and classes. Many of the UniDAC components and classes inherit or implement
members from other VCL and LCL classes and interfaces. The product

Universal Data Access Components10

© 2013 Enter your company name

documentation also includes a summary of all members within each of these
classes. To view a detailed description of a particular component, look it up in the
Components List section. To find out more about a specific standard VCL or LCL
class a UniDAC component is inherited from, see the corresponding topic in your
IDE documentation.
At install time, the UniDAC documentation is integrated into your IDE. It can be
invoked from the UniDAC menu added to the Menu Bar, or by pressing F1 in Object
Inspector or on a selected code segment.

How to get help with UniDAC

There are a number of resources for finding help on using UniDAC classes in your
project.


If you have a question about UniDAC licensing, consult the
Licensing
 section.


You can get community assistance and UniDAC technical support on the
UniDAC Support Forum.
 To get help through the UniDAC Priority Support program, send an e-mail to the

UniDAC development team at unidac@devart.com.
 If you have a question about ordering UniDAC or any other Devart product,

contact sales@devart.com.

For more information, consult the Getting Support topic.

© 1997-2013 Devart. All Rights Reserved.

4 UniDAC Basics

 Introduction
 Connecting to the Database
 Selecting Data
 Executing Queries
 Editing Data
 Executing Stored Procedures
 Creating Master/Detail Relations
 Unified SQL

Introduction

Universal Data Access Components (UniDAC) is a powerful library of nonvisual
cross-database data access components for Delphi, C++Builder and Lazarus(Free
Pascal). The UniDAC library is designed to help programmers develop faster and
cleaner cross-database applications. UniDAC is a complete replacement for standard
database connectivity solutions and presents an efficient native alternative to the
Borland Database Engine and dbExpress for access to Oracle, SQL Server, MySQL,
InterBase, Firebird, SQLite, DB2, Microsoft Access, Advantage Database Server,
Adaptive Server Enterprise, DBF, NexusDB, and other databases (using ODBC

http://www.devart.com/forums/viewforum.php?f=28
mailto:unidac@devart.com
mailto:sales@devart.com

UniDAC Basics 11

© 2013 Enter your company name

provider).
UniDAC is based on the well-known Data Access Components from Devart such as
ODAC, SDAC, MyDAC, IBDAC, and PgDAC.
This article provides an overview of the concepts and tasks you will apply when you
work with UniDAC.

Connecting to the Database

Connecting to the Database in Design-Time

For UniDac component using you have to do following steps:
 Create an empty application that will be used to work with UniDAC components.

Select File | New | VCL Forms Application from the Delphi menu.
 Find UniDAC page on the component palette and drop TUniConnection

component on the form.
 Set the main properties of TUniConnection using TUniConnection editor. Double

click the TUniConnection component on the form to open the editor.
 Select a provider name corresponding to your database from the Provider drop-

down combobox. For example, select Oracle for connecting to an Oracle
database.
 Enter the following connection parameters: user name, password, server,

database, and port into the editor. Some of connection parameters are not used,
depending on the selected provider. For Oracle you need to enter user name,
password, and server, for example. Server is a TNS alias name of an Oracle
database. You can select value for Server from the drop-down list or enter it
manually.

Universal Data Access Components12

© 2013 Enter your company name

 Click the Connect button. If the connection is established successfully the editor
closes automatically.
 Open the editor again by double-clicking the TUniConnection component and

select the Options page. Here you can enter some options specific to the
provider. Schema is a useful option for an Oracle database. We will use objects
from the "SCOTT" sample schema in this example. So, enter "SCOTT" as a value
for Schema.

Connecting to the Database at Run-Time

Set the TUniConnection parameters and open it at run-time. The following example
shows how to do this:
UniConnection1: TUniConnection;
...
UniConnection1.ProviderName := 'Oracle';
UniConnection1.Username := 'scott';
UniConnection1.Password := 'tiger';
UniConnection1.Server := 'ORA1020';
UniConnection1.SpecificOptions.Values['Schema'] := 'SCOTT';
UniConnection1.Open;

Each line in the SpecificOptions property has the following format:
<OptionName>=<Value>. You can add options using the Add method:

UniConnection1.SpecificOptions.Add('Schema=SCOTT');

But it is better to use the Values property of TStrings because this property does
not add a new line if an option with the same name already exists. Instead it
replaces the text after '=' with a new value.

UniDAC Basics 13

© 2013 Enter your company name

To close the connection use the Close method:

UniConnection1.Close;

You should link all the providers that you use in the application. To link a provider,
add its unit to the USES list. For Oracle add the OracleUniProvider to USES:

uses ..., OracleUniProvider;

The provider unit can be easily added by help of the UniDAC Providers palette page.
Select this page, find the OracleUniProvider component and drop it on the form.
IDE will add the corresponding unit to USES automalically if it is not added yet.

Selecting Data

The TUniQuery and TUniTable components allow you to select data. To do it, drop
TUniQuery component into the form. For data selecting you have to establish a
connection to the database. You need to set the Connection property for most
components. If there is a TUniConnection component into the form, UniDAC
automatically sets the Connection property to this component.
For the TUniQuery you need to set the SQL property. Double click the TUniQuery
component to open the TUniQuery editor. On the first page of the editor you can
enter the text for the SQL property.
TUniSQL component is used to execute queries without recordset. The TUniSQL is
not a TDataSet descendant like TUniQuery. TUniSQL is a simple component that
provides the best performance.
It is used in the same way as the TUniQuery. If you want to define SQL and
parameters - use TUniSQL editor at design-time. You can define SQL and
parameters at run-time too. To execute query you have to assign a value for the
SQL property and call the Execute method.
If you connect to the SCOTT sample schema, you can enter:

SELECT * FROM emp

to select data from the EMP table.

Universal Data Access Components14

© 2013 Enter your company name

Click the OK button to save changes and close the editor. To execute the query, you
can change the Active property to True in Object Inspector, or call the Open method
in your program:

UniQuery1: TUniQuery;
...
UniQuery1.Connection := UniConnection1;
UniQuery1.SQL.Text := 'SELECT * FROM emp';
UniQuery1.Open;

The Displaying Data

Drop TDataSource and TDBGrid components into the form to see data from
TUniQuery. You can use standard TDataSource from the Data Access palette page
or TUniDataSource component from the UniDAC page. These components have
same functionality but TUniDataSource sets the DataSet property automatically.
Set the DataSet property of TDataSource to UniQuery1 (if it is not set
automatically). Then set the DataSource property of TDBGrid to DataSource1. If
the Active property of UniQuery is True, DBGrid will display data.

UniDAC Basics 15

© 2013 Enter your company name

To close the TUniQuery use its Close method or set its Active property to False.
UniQuery with data always has a current record. Current record is changed while
you move across the DBGrid.
Current record can be changed programmatically by help of the First, Last, Next,
Prior, Locate, and LocateEx methods of the TUniQuery.

Working with Fileds

The TUniQuery has a Fields collection containing one TField object for each field in
your query. You can get a reference to the TField object by field number or by using
FieldByName method:

UniQuery1.Fields[0];
UniQuery1.FieldByName('EMPNO');

TField object can read data from the current record. Use a Value property of TField
or typed properties like AsInteger, AsString, etc.
For example, you can copy data from the TUniQuery to a TMemo component using
the following code:

var
 Empno: integer;
 Ename: string;
begin
 Memo1.Lines.Clear;
 UniQuery1.Open;
 UniQuery1.First;
 while not UniQuery1.Eof do begin
 Empno := UniQuery1.FieldByName('EMPNO').AsInteger;
 Ename := UniQuery1.FieldByName('ENAME').AsString;
 Memo1.Lines.Add(IntToStr(Empno) + ' ' + Ename);
 UniQuery1.Next;
 end;
 UniQuery1.Close;

Universal Data Access Components16

© 2013 Enter your company name

end;

The Next method sets the Eof property of TUniQuery to True if it cannot move to the
next record because there are no more records.
The TUniQuery creates and destroys fields dynamically when you open and close the
query. Sometimes you need to create persistent fields generated with the form. To
create persistent fields, right click TUniQuery component and select Fields Editor
from the context menu. Fields Editor window will be opened. Right click inside the
Fields Editor window and select Add all fields from the menu. Now you will see
the list of fields in the window.

Fields are created as the components on the form. IDE adds corresponding variable
of form class for each field. You can rewrite the previous code example using the
persistent field variables:

...
 while not UniQuery1.Eof do begin
 Empno := UniQuery1EMPNO.AsInteger;
 Ename := UniQuery1ENAME.AsString;
 Memo1.Lines.Add(IntToStr(Empno) + ' ' + Ename);
 UniQuery1.Next;
 end;
...

We recommend use TUniTable to select data from one table. You don't need to write
SQL statement for TUniTable. You set the TableName property and TUniTable
automatically generates SQL statement to get data from this table.
Drop the TUniTable into the form and double-click the component to open
TUniTable editor. You can enter value for the TableName property and for
OrderFields and FilterSQL properties in the editor.

UniDAC Basics 17

© 2013 Enter your company name

When OrderFields and FilterSQL properties are empty, TUniTable generates simple
SQL statement like

SELECT * FROM emp

If you set values for OrderFields or FilterSQL, corresponding ORDER BY or WHERE
clauses will be added to the statement.

Executing Queries

TUniQuery can be used not only for selecting data but for executing any queries
supported by database server.
For example, you can change records in the EMP table by using the TUniQuery with
UPDATE statement. Drop the TUniQuery component on the form and double click it
to open the editor. Enter the following text for SQL:
UPDATE emp SET sal = sal + 1 WHERE empno = 10

The query can be executed at design-time from the editor using the Execute
button. To execute the query at run-time, call the Execute method of TUniQuery.
UniQuery1.Execute;

Parameters

Queries don't use fixed values in "SET" or "WHERE" clause in general. For example,
your program can get the new values for "SAL" and "EMPNO" fields from the user.
You can use parameters for this purpose:
UPDATE emp SET sal = :sal WHERE empno = :empno

Parameters are marked using ':' (colon) and parameter name.
Values of the parameters can be set at run-time, and the server replaces parameter
names with the values during the query execution.
After the query with parameters was defined into the SQL tab of the TUniQuery
editor, go to the Parameters tab. Here you have to set DataType and ParamType
for each parameter

Universal Data Access Components18

© 2013 Enter your company name

At run-time you can access the parameters by number or by name using the
Params collection of TUniQuery.
UniQuery2.Params[0];
UniQuery2.ParamByName('SAL');

Use the following code to execute query with parameters:
UniQuery2.ParamByName('SAL').AsFloat := 100;
UniQuery2.ParamByName('EMPNO').AsInteger := 10;
UniQuery2.Execute;

Each parameter is substituted only by single value in the SQL statement.

Macros

Any part of statement (table name, for example) can be changed dynamically with
macros. The macros are marked with '&' (ampersand) and macro name:
SELECT * FROM ¯o1

The macros are accessed by number or name from the Macros collection of
TUniQuery component in your program code.
UniQuery3.Macros[0];
UniQuery3.MacroByName('MACRO1');

The value of a macro can be set by the Value property of a TMacro. For example:
UniQuery3.MacroByName('MACRO1').Value := 'emp';

or
UniQuery3.MacroByName('MACRO1').Value := 'emp ORDER BY ename';

Editing Data

All of the datasets components described above are editable. Call the Edit method
to begin editing. Call the Post or Cancel method to finish editing. If you call Post,

UniDAC Basics 19

© 2013 Enter your company name

the changes are passed to the database server. If you call Cancel, changes will be
revoked.
UniQuery1.Edit;
UniQuery1.FieldByName('HIREDATE') := Now;
UniQuery1.FieldByName('SAL') := 1000;
UniQuery1.Post;

Database Controls like TDBGrid or TDBEdit allow user for data editing.
 Run the test application.
 You can edit any cell in DBGrid linked to TUniQuery. The Edit method called

automatically, when editing starts. The Post method is called, when another
record is selected. To cancel your changes in the current record, press the ESC
key.

A new record can be inserted by the Insert or Append method. The Append method
adds record to the end of dataset. The Insert method inserts record in the current
position. After one of these methods is called, you should assign values to the fields
and call the Post method:
UniQuery1.Append;
UniQuery1.FieldByName('EMPNO') := -1;
UniQuery1.FieldByName('ENAME') := 'NEW EMP';
UniQuery1.FieldByName('HIREDATE') := Now;
UniQuery1.FieldByName('SAL') := 2000;
UniQuery1.Post;

To delete record in the current position, call the Delete method.
UniDAC executes "INSERT", "UPDATE", or "DELETE" statement to apply changes to
the database.

Debugging

UniDAC can show SQL statements in dialog window before execution. Set the Debug
property of TUniQuery to True to see SQL statements of your query. For profiling in
real-time you have to add the UniDacVcl unit to the USES list. Then run the
application. You see the SELECT statement at startup. Try to edit a record, add a
new record, and delete this record. You will see the corresponding update
statements in the Debug window.

Updating table property

If more than one table is specified in the query, UniDAC allows you to update data
only in one table. Fields from other tables become read-only. For example, change
the SQL property of UniQuery1 to the following:
SELECT e.*, d.dname
FROM emp e INNER JOIN dept d ON e.deptno = d.deptno

Now you can edit all the fields except the last field DNAME.
UpdatingTable property contains a name of the table that will be updated.
UniDAC uses the first table specified after "SELECT" or the first table pointed after
"FROM" as default updating table, depending from the current data provider.
If your query contains several tables, it is recommended to always set the
UpdatingTable property to the table you want to edit.

General field information

UniDAC requires information about key fields of the updating table to generate
"WHERE" clause of "UPDATE" and "DELETE" statements. Some servers like SQL
Server return this information when a query is executed. Oracle and other database
servers do not return information about key fields, so UniDAC performs the
additional query to the database to get key fields. You can set the KeyFields

Universal Data Access Components20

© 2013 Enter your company name

property of TUniQuery manually. In this case an additional query is not executed.

Complex queries

If you set a complex query to the SQL property, UniDAC may not be able to
generate the correct update statements. Or you need custom SQL statements to
apply changes to the database (for example, you can apply changes using stored
procedures instead of "INSERT", "UPDATE", and "DELETE" statements). You can use
the SQLInsert, SQLUpdate, and SQLDelete properties of TUniQuery to set custom
update statements. If you double-click one of these properties in Object Inspector,
the Update SQLs page of the TUniQuery editor is opened.
A field value in the update queries can be referenced by the parameter with the
same name as field name. For example, use the following statement in the
SQLUpdate property to save changes to "ENAME" and "SAL" fields.
UPDATE emp SET ename = :ename, sal = :sal
WHERE empno = :empno

Old parameters

You can reference to an old value of the field by adding "OLD_" prefix to the
parameter name. For example, if user can change value of EMPNO field, you need to
use the old value of this field in the "WHERE" condition:
UPDATE emp SET empno = :empno, ename = :ename, sal = :sal
WHERE empno = :OLD_empno

SQL generator

For simple SQL-queries SQL properties can be updated automatically on the SQL
generator tab. Go to the SQL Generator page of the query editor. If your query
has several tables in the "FROM" clause, select table to update in the Table Name

UniDAC Basics 21

© 2013 Enter your company name

combobox. You can select statement types to be generated, key fields, and data
fields.
Click the Generate SQL button. The update statements are generated and the
editor changes the current page to Update SQLs. Now you can make changes in
the generated statements.

Using stored procedures

Stored procedure can be used in the update statements. The procedure for insert is
similar to following (example for Oracle):
CREATE OR REPLACE PROCEDURE DEPT_INSERT
 (pDNAME VARCHAR, pLOC VARCHAR)
AS
BEGIN
 INSERT INTO DEPT (DNAME, LOC) VALUES (pDNAME, pLOC);
END;

An SQL statement for stored procedure call can be written manually or created by
generator. Go to the Stored Proc Call Generator page, select the stored
procedure name, select the statement type and click the Generate button.

Executing Stored Procedures

TUniStoredProc allows you to execute a stored procedure.
 Drop TUniStoredProc on the form and double-click it. TUniStoredProc editor will

be opened.
 Enter the stored procedure name or select it from the list. For example, you can

Universal Data Access Components22

© 2013 Enter your company name

select "EMP_INS" procedure from the previous topic.

 When you move focus to another control or press the Create SQL button (),
the editor creates SQL statement for calling the procedure. You can see it in the
box below the stored procedure name.
 If the procedure has parameters, they will be added to the generated SQL

statement and to the Params property.

To call the procedure at run-time use the Execute method. You may also set the
stored procedure name and generate SQL statement for calling the stored procedure
at run-time. Call the PrepareSQL method to generate SQL statement for stored
procedure. After that Params collection is filled, and you can assign values to the
parameters.
UniStoredProc1.StoredProcName := 'DEPT_INSERT';
UniStoredProc1.PrepareSQL;
UniStoredProc1.ParamByName('PDNAME').AsString := 'DEPT 1';
UniStoredProc1.ParamByName('PLOC').AsString := 'California';
UniStoredProc1.Execute;

Creating Master/Detail Relations

Imagine that you have two tables, and second table has a field (foreign key) that
references the primary key of the first table. For example, the "

SCOTT" sample schema in the Oracle database has "DEPT" and "EMP" tables.

UniDAC Basics 23

© 2013 Enter your company name

"DEPT" contains the list of departments, and "EMP" contains the list of employes.
"DEPT" table has DEPTNO primary key. "EMP" also has the DEPTNO field. This field
references the "DEPT" table and contains a number of the department where an
employee works.
If you have two TUniQuery or TUniTable components, you can link them in a
master/detail relation. The detail dataset shows only records corresponding to the
current record in the master dataset.
For example, drop two TUniTable components on the form. Set the Name property
of the first table to "DeptTable", and TableName property to "Dept". Set the Name
property of the second table to "EmpTable", and TableName property to "Emp".
Set the Active property of both tables to True.
Drop two TUniDataSource components on the form, set their names to "DeptDS"
and "EmpDS", and link them to the corresponding tables. Then drop two TDBGrid
components and link them to the corresponding data sources.
Set the MasterSource property of EmpTable to "DeptDS". Double-click the
MasterFields property of EmpTable in Object Inspector. It will open the editor for
linking fields between details and master. Select the DEPTNO field in both left and
right list and click the Add button. Click the OK button to close the dialog.
Now EmpTable displays only employes from the current department. If you change
the current record in DeptTable, EmpTable is automatically refreshed and displays
another employes.
When you set MasterSource for TUniTable or TUniQuery, its SQL is automatically
modified. Fields that you linked are added to the WHERE condition:
SELECT * FROM EMP
WHERE DEPTNO = :DEPTNO

The parameter value is set from the corresponding field of the master dataset, then
the query is executed. When you change the current record in the master, the
parameter value in the detail is changed, and the detail query is reexecuted.
Text parameters, corresponding to the master fields, can be added to the SQL text
manually. In this case you don't need to set the MasterFields property, just set
the MasterSource property. UniDAC sets values for parameters automatically if the
master dataset has fields with the same name.
When the current record in the master is changed, the detail query is reexecuted
each time. You can avoid this by using local master/detail. Set Options.
LocalMasterDetail to True for TUniTable or TUniQuery. In this case parameters are
not added to the detail query. This query is executed only one time and returns all
records. UniDAC filters these records locally to display only records corresponding to
the master record.

Unified SQL

Unified SQL includes special directives, macros, literals, and functions. You can use
Unified SQL to write SQL statements that are independent from used provider and
database.

There are several ways to do it. First way is using connection macros and IF
directive. UniDAC automatically defines the macro that corresponds to the selected
provider in this way. For example, if you select Oracle provider,

Oracle

 macros is defined. If you want to use "

Universal Data Access Components24

© 2013 Enter your company name

EMP1"

 table for Oracle and "

EMP2"

 table for SQL Server, you can assign the following to the SQL property of
TUniQuery:
{if ORACLE}
SELECT * FROM EMP1
{else}
{if SQLSERVER}
SELECT * FROM EMP2
{else}
SELECT * FROM EMP
{endif}
{endif}

To define macros at design-time, open the TUniConnection editor and select Macros
page. Fill Name and Value boxes at the bottom of the page. Then press the Add
button. You can use the added macro in IF directive or directly in SQL statements.

For example, if you define macro "EMP_TABLE" with value "EMP", you can write the
following SQL statement:
SELECT * FROM {EMP_TABLE}

The several macros with the same name but different value and conditions can be
defined. Condition is the name of another macro. If the macro, specified in
condition, is enabled, the current macro is also enabled and its value replaces the
macro name in SQL statements. If the macro specified in condition is not enabled,
the current macro is not enabled also.
The macros corresponding to the providers in Condition can be used. For example,
you can add two more macros with name "EMP_TABLE": one with Value = EMP1 and

UniDAC Basics 25

© 2013 Enter your company name

Condition = ORACLE, another with Value = EMP2 and Condition = SQLSERVER. In
this case the query
SELECT * FROM {EMP_TABLE}

is equivalent for the query with IF directives from the first example.
The Macros collection of TUniConnection can be used for macros adding at run-time:
UniConnection1.Macros.Add('EMP_TABLE', 'EMP');
UniConnection1.Macros.Add('EMP_TABLE', 'EMP1', 'ORACLE');
UniConnection1.Macros.Add('EMP_TABLE', 'EMP2', 'SQLSERVER');

Unified SQL defines unified literals for date, time and timestamp values. For
example:
SELECT * FROM emp WHERE HIREDATE > {date '1982-01-15'}

For Oracle, this statement is converted to the following:
SELECT * FROM emp WHERE HIREDATE > TO_DATE('1982-01-15', 'YYYY-MM-DD')

Unified SQL supports also functions. Functions are marked in SQL statements using
'fn' keyword. For example,
SELECT {fn TRIM(EName)} FROM emp

evaluates to
SELECT TRIM(EName) FROM emp

it is the counterpart in the DBMS. But in MS SQL Server there is no single
corresponding function, so the expression evaluates to
SELECT LTRIM(RTRIM(EName)) FROM emp

The treated article presented general definition of UniDAC components and them
usage. For detailed information please look UniDAC documentation. The UniDAC
documentation includes an useful articles and a detailed reference of all UniDAC
components and classes.

If you want to download trial version of UniDAC, please visit http://www.devart.
com/unidac/download.html. For information about getting the UniDAC, visit the
How to Order section. If you have a question about UniDAC or any other Devart
product, contact sales@devart.com.

© 1997-2013 Devart. All Rights Reserved.

5 Features

General usability:
 Direct access to server data. Does not require installation of other data provider

layers (such as BDE and ODBC)
 Access without using client library [Oracle, MySQL, PostgreSQL]
 Interface compatible with standard data access methods, such as BDE and ADO
 VCL, LCL and FMX versions of library available
 Separated run-time and GUI specific parts allow you to create pure console

applications
 Unicode charset support
 National charset support [Oracle, MySQL, InterBase, PostgreSQL]
 UniSQL for writing server-independent queries

Network and connectivity:
 Disconnected Model with automatic connection control for working with data

http://www.devart.com/unidac/download.html
http://www.devart.com/unidac/download.html
http://www.devart.com/unidac/ordering.html
mailto:sales@devart.com

Universal Data Access Components26

© 2013 Enter your company name

offline
 Local Failover for detecting connection loss and implicitly reexecuting certain

operations
 Ability to search for installed SQL Server databases in a local network [SQL

Server, MySQL]
 Connection timeout management [Oracle, SQL Server, MySQL, PostgreSQL]

Compatibility:
 Full support of the latest server versions
 Support for embedded server versions
 Compatible with all IDE versions starting with Delphi 6, C++Builder 6, and

FreePascal
 Wide reporting component support, including support for InfoPower,

ReportBuilder, FastReport
 Support of all standard and third-party visual data-aware controls
 Allows you to use Professional Edition of Delphi and C++Builder to develop

client/server applications.

Server-specific features:
 Oracle

o Multiple Oracle Homes support

o Oracle sequence support

o Direct LOB access support

o Temporary LOB management routines

o Temporary LOBs for updating LOB fields

o OCI Connection Pooling and Statement Caching

o Oracle optimizer control

o CLIENT_IDENTIFIER support

o DBMS_ALERT support with the TUniAlerter component [New]

 SQL Server

o Possibility to change application name for a connection

o Possibility to change workstation identifier for a connection

o Configuration of OEM/ANSI character translation

o Enhanced support for SQL Server Compact Edition

 MySQL

o HANDLER syntax support

o Possibility to retrieve last auto-incremented value

 InterBase/Firebird

o Advanced BLOB support

o Streaming (non-caching) BLOB access support

o Advanced generator support

o Advanced support for the character set OCTETS

o Support for the Firebird 2 EXECUTE BLOCK syntax

o Support for the Firebird 2 RETURNING clause

o Advanced locking for Firebird 2

o Automatic updates by DB_KEY unique field for Firebird 2

o Multiple transactions support with TUniTransaction component

o InterBase events support with the TUniAlerter component [New]

o

 PostgreSQL

o Advanced sequences support

Features 27

© 2013 Enter your company name

o Advanced Large Objects support

o Ability to control Fetch block size

o Returning result sets from stored procedures

o SSL support

o Notifications support with the TUniAlerter component [New]

 SQLite

o Support for all commonly used data types

o Possibility to retrieve last auto-incremented value

 DB2

o Advanced sequences support

o Schema and function path support

Performance:
 High overall performance
 Fast controlled fetch of large data blocks
 Optimized string data storing
 Advanced connection pooling
 High performance of applying cached updates with batches
 Caching of calculated and lookup fields
 Fast Locate in a sorted DataSet
 Preparing of user-defined update statements

Local data storage operations:
 Database-independent data storage with TVirtualTable component
 CachedUpdates operation mode
 Local sorting and filtering, including by calculated and lookup fields
 Local master/detail relationship
 Master/detail relationship in CachedUpdates mode

Data access and data management automation:
 Automatic data updating with TUniQuery, TUniTable, and TUniStoredProc

components
 Automatic record refreshing and locking
 Automatic query preparing
 Support for ftWideMemo field type in Delphi 2006 and higher

Extended data access functionality:
 Separate component for executing SQL statements
 Ability to retrieve metadata information with TUniMetaData component
 Simplified access to table data with TUniTable component
 BLOB compression support
 Support for using macros in SQL
 FmtBCD fields support
 Ability to customize update commands by attaching external components to

TUniUpdateSQL objects
 Deferred detail DataSet refresh in master/detail relationships
 MIDAS technology support
 UniDataAdapter component for WinForms and ASP.NET applications
 Distributed transactions support with TUniTransaction component [Oracle, SQL

Server]
 Default value support for stored procedures

Universal Data Access Components28

© 2013 Enter your company name

 Fast record insertion with the TUniLoader component
 Event notification support with the TUniAlerter component [New]

Data exchange:
 Transferring data between all types of TDataSet descendants with

TCRBatchMove component
 Data export and M:Devart.Dac.TVirtualTable.LoadFromFile(System.String) to/

from XML (ADO format)
 Ability to synchronize positions in different DataSets
 Extended data management with the TUniDump component

Script execution:
 Advanced script execution features with TUniScript component
 Support for executing individual statements in scripts
 Support for executing huge scripts stored in files with dynamic loading
 Ability to use standard clients tool syntax in scripts

SQL execution monitoring:
 Extended SQL tracing capabilities provided by the TUniSQLMonitor component

and DBMonitor
 Borland SQL Monitor support
 Ability to send messages to DBMonitor from any point in your program

Visual extensions:
 Includes source code of enhanced TCRDBGrid data-aware grid control
 Customizable connection dialog

Design-time enhancements:
 DataSet Manager tool to control DataSet instances in the project
 Advanced design-time component and property editors
 Automatic design-time component linking
 Easy migration from BDE and ADO with Migration Wizard
 More convenient data source setup with the TUniDataSource component
 Syntax highlighting in design-time editors

Product clarity:
 Complete documentation sets
 Printable documentation in PDF format
 A large amount of helpful demo projects

Licensing and support:
 Included annual UniDAC Subscription with Priority Support
 Licensed royalty-free per developer, per team, or per site

© 1997-2013 Devart. All Rights Reserved.

6 What's New

25-Apr-13 New Features in UniDAC 5.0:
 Rad Studio XE4 is supported

What's New 29

© 2013 Enter your company name

 NEXTGEN compiler is supported
 Application development for iOS is supported
 Connection string support is added
 Possibility to encrypt entire tables and datasets is added
 Possibility to determine if data in a field is encrypted is added
 Support of TimeStamp, Single and Extended fields in VirtualTable is added
 Migration from PgDAC and LiteDAC is added to the Migration Wizard
 Migration from AnyDAC and FireDAC is added to the Migration Wizard

Oracle data provider
 BINARY_DOUBLE & BINARY_FLOAT data types support in the Direct mode is

added

MySQL data provider
 SSL support in Mac OS is fixed

InterBase data provider
 Application development for iOS using InterBase XE3 ToGo Edition is supported
 The DefaultTransaction property in TUniConnection is added
 The Params specific option in TUniTransaction is added

PostgreSQL data provider
 Now ErrorCode indicates a socket error code when a connection error appears
 SSL support in Mac OS is fixed

SQLite data provider
 Now the Direct mode is based on the SQLite engine version 3.7.16.2
 Now SQLite string data type without length is mapped as ftMemo instead of

ftString
 Converter from Unix and Julian data formats to ftDateTime is added

ASE data provider
 The EncryptPassword option is added
 The DetectFieldsOnPrepare option is added

DB2 data provider
 XML fields support is added

12-Dec-12 New Features in UniDAC 4.6:
 Rad Studio XE3 Update 1 is now required
 C++Builder 64-bit for Windows is supported

SQLServer data provider
 The Port specific option that allows specifying the port number for connection is

added

05-Sep-12 New Features in UniDAC 4.5:
 Rad Studio XE3 is supported
 Windows 8 is supported

21-Jun-12 New Features in UniDAC 4.2:
 Update 4 Hotfix 1 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now

required
 Data Type Mapping support is added
 Data Encryption in a client application is added
 The TMSEncryptor component for data encryption is added
 Calling of the TCustomDASQL.BeforeExecute event is added

Universal Data Access Components30

© 2013 Enter your company name

23-Nov-11 New Features in UniDAC 4.1:
 Update 4 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required
 Mac OS X and iOS in RAD Studio XE2 is supported
 FireMonkey support is improved
 Lazarus 0.9.30.4 and FPC 2.6.0 are supported
 Mac OS X in Lazarus is supported
 Linux x64 in Lazarus is supported
 FreeBSD in Lazarus is supported

Oracle data provider
 Oracle 11 Express Edition is supported
 Support for the NonBlocking option is added
 The QueryResultOnly option is added to TOraChangeNotification

PostgreSQL data provider
 PostgreSQL 9.1 is supported

SQLite data provider
 DateFormat and TimedFormat specific options are added in the SQLite data

provider

NexusDB data provider
 Support of NexusDB 3.09 is added

15-Sep-11 New Features in Universal Data Access
Components 4.00:
 Embarcadero RAD Studio XE2 is supported
 Application development for 64-bit Windows is supported
 FireMonkey application development platform is supported
 Support of master/detail relationship for TVirtualTable is added
 OnProgress event in TVirtualTable is added
 TDADataSetOptions.SetEmptyStrToNull property that allows inserting NULL

value instead of empty string is added

MS Access data provider
 Exclusive access to databases in MSAccess provider is added

Adaptive Server Enterprise data provider
 Ability to set ApplicationName in the ASE provider is added
 The AnsiNull option in the ASE provider is added

28-Apr-11 New Features in Universal Data Access
Components 3.70:
 Lazarus 0.9.30 and FPC 2.4.2 is supported
 New DBF provider is added

Oracle data provider
 Oracle 9, Oracle 10, and Oracle 11 authentication in the Direct mode is

supported
 Case sensitive login and password in the Direct mode is supported
 Unicode login and password in the Direct mode is supported
 Client Identifier in the Direct mode is supported
 Support of BLOB, CLOB, and NCLOB data types in TUniLoader is improved

PostgreSQL data provider

What's New 31

© 2013 Enter your company name

 Application Name connection option is supported
 Payload parameter for PostgreSQL notification is supported

SQL Server data provider
 Support for SQL Server Compact Edition 4.0 is added

SQLite data provider
 User-defined function for SQLite provider is supported
 Default UniNoCase collation for SQLite provider is added (the DefaultCollations

specific option)
 Interface user-defined collation registration for SQLite provider is improved
 SQLite source version is fixed (missing .inc file is added)

Adaptive Server Enterprise data provider
 Support for the AnsiNull option is added

26-Jan-11 New Features in Universal Data Access
Components 3.60:
 NexusDB provider
 PostgreSQL 9.0 supported
 Improved performance in the PostgreSQL provider
 Encryption support in the SQLite provider
 Support for connection with using Service Name in the Direct mode in the Oracle

provider
 Support for ASCII databases in the SQLite provider (the ASCIIDataBase specific

option)

13-Sep-10 New Features in Universal Data Access
Components 3.50:
 Embarcadero RAD Studio XE suppored
 TUniAlerter component
 Collation and UTF sorting support in the SQLite provider
 Support for dbMonitor 3
 Support for extended SQL for MS Access (set the ExtendedAnsiSQL specific

option to 1)
 Support of ONLY lexeme in the FROM statement for PostgreSQL
 Ability to lock records in the CachedUpdate mode
 Ability to use Access system database added
 Ability to send call stack information to the dbMonitor component
 Now setting the SetFieldsReadOnly option to False makes all fields not readonly

10-Sep-09 New Features in Universal Data Access
Components 3.00:
 DB2, Microsoft Access, Advantage Database Server, Adaptive Server Enterprise,

and other databases (using ODBC provider) support added
 Embarcadero RAD Studio 2010 supported

27-May-09 New Features in Universal Data Access
Components 2.70:
 SQLite support added

02-Apr-09 New Features in Universal Data Access

Universal Data Access Components32

© 2013 Enter your company name

Components 2.50:
 Unified SQL support

Unified SQL allows to write truly database-independent SQL code. Unified SQL
includes:
 Macros - in Unified SQL macros can evaluate to a different value depending on

the provider used by the TUniConnection component.
 If - for the purpose of extra flexibility Unified SQL supports conditional

inclusion of SQL code into resulting statements using {if} directive. This
allows to set different SQL for different DBMS.
 Functions - introduce standard for calling common SQL functions. In run time

function is transformed either to the corresponding native function, or to an
equivalent expression.
 Literal - provides universal syntax for date, time, and timestamp literals.
 TUniLoader component

serves for fast loading of data to the database. For each type of database server
TUniLoader uses its specific interfaces for loading with maximum speed. For
example, Oracle Direct Path Load interface is used for Oracle.
 TUniDump component

serves to store data from tables or editable views as a script and to restore data
from a received script.
 TUniConnection.AssignConnect method

shares physical connection between several TUniConnection components
 Added support for Free Pascal under Linux
 Added NoPreconnect property to TUniScript for executing CONNECT and CREATE

DATABASE commands
 Added DMLRefresh support in the PostgreSQL provider

09-Dec-08 New Features in Universal Data Access
Components 2.00:
 PostgreSQL support added

23-Oct-08 New Features in Universal Data Access
Components 1.20:
 Delphi 2009 and C++Builder 2009 supported
 Extended Unicode support for Delphi 2007 added (special Unicode build)
 Free Pascal 2.2 supported
 Powerful design-time editors implemented in Lazarus
 Completed with more comprehensive structured Help

© 1997-2013 Devart. All Rights Reserved.

7 Demo Projects

UniDAC includes a number of demo projects that show off the main UniDAC
functionality and development patterns.
UniDAC demo projects consist of one large project called UniDACDemo with demos

Demo Projects 33

© 2013 Enter your company name

for all main UniDAC components, use cases, and data access technologies, and a
number of smaller projects on how to use UniDAC in different IDEs and how to
integrate UniDAC with third-party components.
Most demo projects are built for Delphi. There are only two UniDAC demos for C+
+Builder. However, the C++Builder distribution includes source code for all other
demo projects as well.

Where are the UniDAC demo projects located?

In most cases all UniDAC demo projects are located in "%UniDAC%\Demos\".
In Delphi 2007 for Win32 under Windows Vista all UniDAC demo projects are
located in "My Documents\Devart\UniDAC for Delphi 2007\Demos", for example,
"C:\Documents and Settings\All Users\Documents\Devart\UniDAC for Delphi 2007
\Demos\".
The structure of the demo project directory depends on the IDE version you are
using.
For most new IDEs with .NET support, the structure will be as follows.
Demos

|—dotNet
| |—UniDACDemo [.NET version of the main UniDAC demo project]
| |—Miscellaneous
| |— [Some other .NET demo projects]
|
|-Win32

|—UniDACDemo [Win32 version of the main UniDAC demo project]
|—Performance [Demo project, that compares performance of UniDAC
with another components (BDE, ADO, dbExpress)]
|—ThirdParty
| |— [A collection of demo projects on integration with third-
party components]
|—Miscellaneous
 |— [Some other Win32 demo projects on design technologies]

In Delphi 6, 7, C++Builder 6, and FreePascal .NET is not supported, and the root
directories are omitted. For these IDEs you will see the following structure.
Demos

|—UniDACDemo [The main UniDAC demo project]
|—Performance [Demo project, that compares performance of UniDAC with
another components (BDE, ADO, dbExpress)]
|—ThirdParty
| |— [A collection of demo projects on integration with third-party
components]
|—Miscellaneous
 |— [Some other demo projects on design technologies]

UniDACDemo is the main demo project that shows off all the UniDAC functionality.
The other directories contain a number of supplementary demo projects that
describe special use cases. A list of all samples in the UniDAC demo project and a
description for the supplementary projects is provided in the following section.
Note: This documentation describes ALL UniDAC demo projects. The actual demo
projects you will have installed on your computer depend on your UniDAC version,
UniDAC edition, and the IDE version you are using. The integration demos may
require installation of third-party components to compile and work properly.

Instructions for using the UniDAC demo projects

To explore a UniDAC demo project,

Universal Data Access Components34

© 2013 Enter your company name

1.Launch your IDE.
2. In your IDE, choose File|Open Project from the menu bar.
3.Find the directory you installed UniDAC to and open the Demos folder.
4.Browse through the demo project folders located here and open the project file

of the demo you would like to use.
5.Compile and launch the demo. If it exists, consult the ReadMe file for more

details.

The executed version of the demo will contain a sample application written with
UniDAC or a navigable list of samples and sample descriptions. To properly use each
sample, you will need to connect to a working server.
The included sample applications are fully functional. To use the demos, you have
to first set up a connection to a server. You can do so by clicking on the "Connect"
button.
Many demos may also use some database objects. If so, they will have two object
manipulation buttons, "Create" and "Drop". If your demo requires additional
objects, click "Create" to create necessary database objects. When you are done
with a demo, click "Drop" to remove all objects used for the demo from your
database.
Note: The UniDAC demo directory includes two sample SQL scripts for creating and
dropping all test schema objects used in the UniDAC demos. You can modify and
execute this script manually, if you like. This will not change the behavior of the
demos.
You can find a complete walkthrough for the main UniDAC demo project in the
Getting Started topic. Other UniDAC demo projects include a ReadMe file with
individual building and launching instructions.

Demo project descriptions

UniDACDemo

UniDACDemo is one large project which includes two collections of demos.
Working with components
A collection of samples that show how to work with the basic UniDAC
components.

General demos
A collection of samples that show off the UniDAC technology and demonstrate
some ways to work with data.

UniDACDemo can be opened from %UniDAC%\Demos\UniDACDemo\unidacdemo.
dpr (.bdsproj, or .dproj). The following table describes all demos contained in this
project.

Working with Components

Name Description

ConnectDialo
g

Demonstrates how to customize the UniDAC connect dialog.
Changes the standard UniDAC connect dialog to two custom
connect dialogs. The first customized sample dialog is inherited
from the TForm class, and the second one is inherited from the
default UniDAC connect dialog class.

CRDBGrid Demonstrates how to work with the TCRDBGrid component.
Shows off the main TCRDBGrid features, like filtering,
searching, stretching, using compound headers, and more.

Demo Projects 35

© 2013 Enter your company name

Query Demonstrates working with TUniQuery, which is one of the
most useful UniDAC components. Includes many TUniQuery
usage scenarios. Demonstrates how to execute queries, edit
data, and export it to XML files, shows how to perform local
filtering, demonstrates several different kinds of record locking
and refreshing, and working with FetchAll mode.
Note: This is a very good introductory demo. We recommend
starting here when first becoming familiar with UniDAC.

Sql Uses TUniSQL to execute SQL statements. Demonstrates how
to work with parameters in SQL, prepare SQL statements, and
create stored procedures calls by UniDAC means.

StoredProc Uses TUniStoredProc to access editable recordsets in the client
application returned from a stored procedure.

Table Demonstrates how to use TUniTable to work with data from a
single table on the server without manually writing any SQL
queries. Performs server-side data sorting and filtering and
retrieves results for browsing and editing.

Transaction Demonstrates the main approaches for setting up distributed
transactions with the TUniTransaction component. Shows how
to manage transactions, tune the transaction isolation level,
and select the coordinator for a distributed transaction.

UpdateSQL Demonstrates using the TUniUpdateSQL component to
customize update commands. Lets you optionally use TUniSQL
and TUniQuery objects for carrying out insert, delete, query,
and update commands.

VirtualTable Demonstrates working with the TVirtualTable component. This
sample shows how to fill virtual dataset with data from other
datasets, filter data by a given criteria, locate specified records,
perform file operations, and change data and table structure.

General Demos

Name Description

CachedUpdat
es

Demonstrates how to perform the most important tasks of
working with data in the CachedUpdates mode, including
highlighting uncommitted changes, managing transactions, and
committing changes in a batch.

FilterAndInde
x

Demonstrates UniDAC's local storage functionality. This sample
shows how to perform local filtering, sorting, and locating by
multiple fields, including by calculated and lookup fields.

MasterDetail Uses UniDAC functionality to work with master/detail
relationships. This sample shows how to use local master/detail
functionality. Demonstrates different kinds of master/detail
linking, including linking by SQL, by simple fields, and by
calculated fields.

Pictures Uses UniDAC functionality to work with BLOB fields and
graphics. The sample demonstrates how to retrieve binary data
from database and display it on visual components. Sample
also shows how to load and save pictures to files and to the
database.

Universal Data Access Components36

© 2013 Enter your company name

Text Uses UniDAC functionality to work with text. The sample
demonstrates how to retrieve text data from database and
display it on visual components. Sample also shows how to
load and save text to files and to the database.

Supplementary Demo Projects

UniDAC also includes a number of additional demo projects that describe some
special use cases, show how to use UniDAC in different IDEs and give examples of
how to integrate it with third-party components. These supplementary UniDAC
demo projects are sorted into subfolders in the %UniDAC%\Demos\ directory.

Location Name Description

Demo Projects 37

© 2013 Enter your company name

ThirdParty

FastRep
ort

Demonstrates how
UniDAC can be used with
FastReport components.
This project consists of
two parts. The first part
is several packages that
integrate UniDAC
components into the
FastReport editor. The
second part is a demo
application that lets you
design and preview
reports with UniDAC
technology in the
FastReport editor.

InfoPo
wer

Uses InfoPower
components to display
recordsets retrieved with
UniDAC. This demo
project displays an
InfoPower grid
component and fills it
with the result of a
UniDAC query. Shows
how to link UniDAC data
sources to InfoPower
components.

IntraW
eb

A collection of sample
projects that show how to
use UniDAC components
as data sources for
IntraWeb applications.
Contains IntraWeb
samples for setting up a
connection, querying a
database and modifying
data and working with
CachedUpdates and
MasterDetail
relationships.

QuickR
eport

Lets you launch and view
a QuickReport application
based on UniDAC. This
demo project lets you
modify the application in
design-time.

Report
Builder

Uses UniDAC data
sources to create a
ReportBuilder report that
takes data from a
database. Shows how to
set up a ReportBuilder
document in design-time
and how to integrate
UniDAC components into
the Report Builder editor
to perform document
design in run-time.

Universal Data Access Components38

© 2013 Enter your company name

Miscellaneous

CBuilde
r

A general demo project
about how to create
UniDAC-based
applications with C+
+Builder. Lets you
execute SQL scripts and
work with result sets in a
grid. This is one of the
two UniDAC demos for C
++Builder.

Dll

Demonstrates creating
and loading DLLs for
UniDAC-based projects.
This demo project
consists of two parts - a
UniDll project that
creates a DLL of a form
that sends a query to the
server and displays its
results, and a UniExe
project that can be
executed to display a
form for loading and
running this DLL. Allows
you to build a dll for one
UniDAC-based project
and load and test it from
a separate application.

FailOve
r

Demonstrates the
recommended approach
to working with unstable
networks. This sample
lets you perform
transactions and updates
in several different
modes, simulate a
sudden session
termination, and view
what happens to your
data state when
connections to the server
are unexpectedly lost.
Shows off
CachedUpdates,
LocalMasterDetail,
FetchAll, Pooling, and
different Failover modes.

Midas

Demonstrates using
MIDAS technology with
UniDAC. This project
consists of two parts: a
MIDAS server that
processes requests to the
database and a thin
MIDAS client that
displays an interactive
grid. This demo shows
how to build thin clients
that display interactive
components and delegate
all database interaction
to a server application for
processing.

VirtualT
ableCB

Demonstrates working
with the TVirtualTable
component. This sample
shows how to fill virtual
dataset with data from
other datasets, filter data
by a given criteria, locate
specified records,
perform file operations,
and change data and
table structure. This is
one of the two demo
projects for C++Builder.

Demo Projects 39

© 2013 Enter your company name

©

 1997-2013 Devart. All Rights Reserved.

8 Component List

This topic presents a brief description of the components included in the Universal
Data Access Components library. Click on the name of each component for more
information. These components are added to the UniDAC page of the Component
palette except for TCRBatchMove and TVirtualTable components. They are added to
the Data Access page of the Component palette.

UniDAC component list

TUniConnection
Lets you set up and control connections to different
servers.

TUniEncryptor
Represents data encryption and decryption in client
application.

TUniTransactio
n

Provides discrete transaction control over sessions. Can
be used to manipulate both simple and distributed
transactions for certain providers.

TUniQuery

Uses SQL statements to retrieve data from tables and
pass it to one or more data-aware components through
a TDataSource object. This component provides a
mechanism for updating data.

TUniTable
Lets you retrieve and update data in a single table
without writing SQL statements.

TUniStoredProc
Executes stored procedures and functions. Lets you edit
cursor data returned as parameter.

TUniSQL
Executes SQL statements, and stored procedures, which
do not return datasets.

TUniScript
Executes sequences of SQL statements, and provides
control over the execution process.

TUniMetaData
Allows to retrieve embracing metadata on specified SQL
object

TUniUpdateSQL
Lets you tune update operations for a DataSet
component.

TUniDataSourc
e

Provides an interface for connecting data-aware controls
on a form and UniDAC dataset components.

TUniLoader Provides quick loading data to a database.

TUniDump
Serves to store a database or its parts as a script and
also to restore database from received script.

TUniSQLMonito
r

Interface for monitoring dynamic SQL execution.

Universal Data Access Components40

© 2013 Enter your company name

TUniConnectDi
alog

Allows you to build custom prompts for provider name,
server name, port number, database, user name, and
password.

TUniAlerter Used to send and receive database events.

TUniProvider Links the InterBase provider to an application.

TUniProvider Links the MySQL provider to an application.

TUniProvider Links the Oracle provider to an application.

TUniProvider Links the PostgreSQL provider to an application.

TUniProvider Links the SQL Server provider to an application.

TUniProvider Links the SQLite provider to an application.

TUniProvider Links the ODBC provider to an application.

TUniProvider Links the DB2 provider to an application.

TUniProvider Links the Access provider to an application.

TUniProvider Links the Advantage provider to an application.

TUniProvider Links the ASE provider to an application.

TUniProvider Links the DBFprovider to an application.

TUniProvider Links the NexusDB provider to an application.

TVirtualTable

Provides dataset functionality for data that has no real
database connection. This component is placed on the
Data Access page of the Component palette, not on the
UniDAC page.

TCRBatchMove

Transfers data between all types of TDataSet
descendants. This component is placed on the Data
Access page of the Component palette, not on the
UniDAC page.

© 1997-2013 Devart. All Rights Reserved.

9 Requirements

The UniDAC's core itself has no specific system requirements.
To make an application with UniDAC Standard Edition you need at least one of Data
Access Components to be installed (ODAC, SDAC, MyDAC, IBDAC, or PgDAC).
Provider-specific requirements can be found in the corresponding article of the
Provider-specific Notes section.

© 1997-2013 Devart. All Rights Reserved.

http://www.devart.com/odac/
http://www.devart.com/sdac/
http://www.devart.com/mydac/
http://www.devart.com/ibdac/
http://www.devart.com/pgdac/

Compatibility 41

© 2013 Enter your company name

10 Compatibility

Database Server Compatibility

Database Windows
Mac&nbs
pOS&nbs

pX
iOS Linux FreeBSD

Oracle
Servers:
11g, 10g,
9i, 8i, 8.0,
and 7.3,
including
Oracle
Express
Edition
11g and
10g
Clients:
11g, 10g,
9i, 8i, 8.0,
and 7.3

+ + + +

Universal Data Access Components42

© 2013 Enter your company name

Microsoft
SQL
Server
Servers:
SQL
Server
2012
(including
Express
edition)
SQL
Server
2008 R2
(including
Express
edition)
SQL
Server
2008
(including
Express
edition)
SQL
Server
2005
(including
Express
edition)
SQL
Server
2000
(including
MSDE)
SQL
Server 7
SQL
Server
Compact
4.0, 3.5,
3.1
SQL Azure
Clients:
SQL OLE
DB and
SQL
Native
Client

+

Compatibility 43

© 2013 Enter your company name

MySQL
Servers:
6.0, 5.6,
5.5, 5.1,
5.0, 4.1,
4.0, and
3.23
Embedded
servers:
6.0, 5.6,
5.5, 5.1,
4.1, and
4.0

+ + + + +

InterBase
Versions
since 5.x
up to XE3

+ + + + +

Firebird
Firebird:
versions 2.
x, 1.x

+ + + +

PostgreS
QL
Versions
since 7.1
up to 9.2

+ + + + +

SQLite
Version
3.0 and
higher

+ + + + +

Nexus
Versions
3.x

+

Microsoft
Access
Versions
95, 97,
2000,
2003,
2007 and
2010

+

DB2
Versions:
8.0 and
higher

+

Universal Data Access Components44

© 2013 Enter your company name

DBF +

Sybase
Adaptive
Server
Enterpris
e
Versions:
11.0 and
higher

+

Sybase
Advantag
e
Database
Server
Versions:
8.0 and
higher

+

Any
database
using
OBDC
provider

+

IDE Compatibility

UniDAC is compatible with the following IDEs:


Embarcadero RAD Studio XE4
 Embarcadero Delphi XE4 for Win32
 Embarcadero Delphi XE4 for Win64
 Embarcadero Delphi XE4 for OSX32
 Embarcadero Delphi XE4 for iOS
 Embarcadero C++Builder XE4 for Win32
 Embarcadero C++Builder XE4 for Win64
 Embarcadero C++Builder XE4 for OSX32
 Embarcadero RAD Studio XE3 (Requires Update 2)
 Embarcadero Delphi XE3 for Win32
 Embarcadero Delphi XE3 for Win64
 Embarcadero Delphi XE3 for OSX32
 Embarcadero C++Builder XE3 for Win32
 Embarcadero C++Builder XE3 for Win64
 Embarcadero C++Builder XE3 for OSX32
 Embarcadero RAD Studio XE2 (Requires Update 4 Hotfix 1)
 Embarcadero Delphi XE2 for Win32
 Embarcadero Delphi XE2 for Win64
 Embarcadero Delphi XE2 for OSX32

http://cc.embarcadero.com/item/29294
http://edn.embarcadero.com/article/42282

Compatibility 45

© 2013 Enter your company name

 Embarcadero C++Builder XE2 for Win32
 Embarcadero C++Builder XE2 for OSX32
 Embarcadero RAD Studio XE
 Embarcadero Delphi XE for Win32
 Embarcadero C++Builder XE
 Embarcadero RAD Studio 2010
 Embarcadero Delphi 2010 for Win32
 Embarcadero C++Builder 2010
 CodeGear RAD Studio 2009 (Requires Update 3)
 CodeGear Delphi 2009 for Win32
 CodeGear C++Builder 2009
 CodeGear RAD Studio 2007
 CodeGear Delphi 2007 for Win32
 CodeGear C++Builder 2007
 Turbo Delphi Professional
 Turbo Delphi for .NET Professional
 Turbo C++ Professional
 Borland Developer Studio 2006 including support of Delphi for Win32, Delphi for

.NET, and C++Builder personalities
 Borland Delphi 2005
 Borland Delphi 7
 Borland Delphi 6 (Requires Update Pack 2 – Delphi 6 Build 6.240)
 Borland C++Builder 6 (Requires Update Pack 4 – C++Builder 6 Build 10.166)
 Lazarus 1.0.4 and Free Pascal 2.6.0 for Windows, Linux, Mac OS X, FreeBSD for

32-bit and 64-bit platforms

Only Architect, Enterprise, and Professional IDE editions are supported. For Delphi
XE, C++Builder XE, Delphi XE2, and C++Builder XE2 UniDAC additionally supports
Starter Edition.
Lazarus and Free Pascal are supported only in Trial Edition and Professional editions
with source code.
Direct mode for Oracle data provider is available only for Delphi and C++Builder
IDEs

Supported Target Platforms
 Windows, 32-bit and 64-bit
 Mac OS X
 iOS
 Linux, 32-bit and 64-bit (only in Lazarus and Free Pascal)
 FreeBSD (only in Lazarus and Free Pascal)

Note that support for 64-bit Windows and Mac OS X was introduced in Rad Studio
XE2, and is not available in older versions of Rad Studio. Support for iOS is
available in Rad Srudio XE2 and XE4, but development for iOS in Rad Studio XE2 is
available only with Professional and Developer editions with source code.

Devart Data Access Components Compatibility

All DAC products are compatible with each other.
But, to install several DAC products to the same IDE, it is necessary to make sure
that all DAC products have the same common engine (BPL files) version. The latest
versions of DAC products or versions with the same release date always have the
same version of the common engine and can be installed to the same IDE.

http://cc.embarcadero.com/item/26921
http://turboexplorer.com/
http://turboexplorer.com/
http://edn.embarcadero.com/article/29791
http://edn.embarcadero.com/article/29793
http://www.lazarus.freepascal.org/
http://www.freepascal.org/

Universal Data Access Components46

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

11 Deployment

UniDAC applications can be built and deployed with or without run-time libraries.
Using run-time libraries is managed with the "Build with runtime packages" check
box in the Project Options dialog box.

Deploying Win32 applications built without run-time
packages

You do not need to deploy any files with UniDAC-based applications built without
run-time packages, provided you are using a registered version of UniDAC.
You can check your application does not require run-time packages by making sure
the "Build with runtime packages" check box is not selected in the Project Options
dialog box.

Trial Limitation Warning

If you are evaluating deploying Win32 applications with UniDAC Trial Edition, you
will need to deploy the following BPL files and their dependencies (required IDE BPL
files) with your application, even if it is built without run-time packages:

dacXX.bpl always

unidacXX.bpl always

Deploying Win32 applications built with run-time packages

You can set your application to be built with run-time packages by selecting the
"Build with runtime packages" check box in the Project Options dialog box before
compiling your application.
In this case, you will also need to deploy the following BPL files with your Win32
application:

dacXX.bpl
always (XX means the Delphi version: XX equals to 70 for
Delphi 7, XX equals to 105 for Delphi 2007, etc.)

dacvclXX.bpl if your application uses the UniDacVcl unit

unidacXX.bpl always

unidacvclXX.
bpl

if your application uses the UniDacVcl unit

XXXproviderXX
.bpl

for each used provider (e.g.: OraProvider70.bpl is the file
belonging to the Oracle provider for Delphi 7)

XdacXX.bpl*
for each used provider with UniDAC Standard Edition, never
used with UniDAC Professional Edition

crcontrolsXX.
bpl

if your application uses the CRDBGrid component

Deploying .NET applications

By default you should deploy the following assemblies with your UniDAC .NET
application:

Devart.Dac.dll always

Deployment 47

© 2013 Enter your company name

Devart.Dac.
AdoNet.dll

if your application uses the UniDataAdapter component

Devart.UniDac.
dll

always

Devart.UniDac.
AdoNet.dll

if your application uses UniDataAdapter component

Devart.UniDac.
XXX.dll

for each used provider

Devart.Xdac.
dll*

for each used provider with UniDAC Standard edition, never
used with UniDAC Professional edition

Devart.XDAC.
AdoNet.dll

for each provider if your application uses UniDataAdapter

Devart.Vcl.dll if your application uses the CRDBGrid component

If you remove the names of these assemblies from the References list of your
project, these files will not be required on the target computer.
*It is not required to deploy XdacXX.bpl files with UniDAC Professional Edition. But
it is necessary to deploy XdacXX.bpl files with Standard Edition of UniDAC. This
happens because in UniDAC Professional Edition functionality of XdacXX.bpl is
included in the correspondent XXXproviderXX.bpl, when in Standard Edition of
UniDAC, XXXproviderXX.bpl is just a wrapper on XdacXX.bpl.
The same is concerning Devart.Xdac.dll and Devart.UniDac.XXX.dll assemblies in .
NET applications. Devart.Xdac.dll is used only in applications built with UniDAC
Standard Edition. In UniDAC Professional Edition, the Devart.UniDac.XXX.dll
assembly includes functionality of Devart.Xdac.dll.

© 1997-2013 Devart. All Rights Reserved.

12 Licensing and Subscriptions

server Data Access Components are licensed, not sold. Please read the end-user
license agreement (EULA) carefully before using the product. You can find the EULA
in the License.rtf file in the UniDAC installation folder.

Licensing

There are three types of full licenses for UniDAC: Single Licenses, Team Licenses,
and Site Licenses.
Single Licenses must be purchased for each developer working on a project that
uses UniDAC.
Purchasing a Team License automatically gives four developers a Single License.
Purchasing a Site License automatically gives all developers in a company a Single
License.
For evaluation purposes only, you may also use UniDAC Trial Edition under a
temporary Evaluation License, which allows you to test UniDAC Trial Edition for a
period of 60 days, after which you must either remove all files associated with
UniDAC or purchase a full license.
To purchase a license for UniDAC, please visit www.devart.com/unidac/ordering.
html.
If you have any questions regarding licensing, please contact sales@devart.com.

mailto:sales@devart.com

Universal Data Access Components48

© 2013 Enter your company name

Editions

Full licenses can be purchased for the following editions of UniDAC: UniDAC
Standard Edition, UniDAC Professional Edition, and UniDAC Professional Edition with
Source Code.
Users can evaluate UniDAC with UniDAC Trial Edition under Evaluation License.

Subscriptions

The UniDAC Subscription program is an annual maintenance and support service for
UniDAC users.
Users with a valid UniDAC Subscription get the following benefits:
 Product support through the UniDAC Priority Support program
 Access to new versions of UniDAC when they are released
 Access to all UniDAC updates and bug fixes
 Notification of new product versions

If you have any questions regarding licensing or subscriptions not covered with
Help, please contact sales@devart.com.

Trial Limitations

UniDAC Evaluation License lets you try UniDAC Trial Edition for a period of 60 days.
There are no functionality limitations in UniDAC Trial Edition during the trial period
for most supported IDEs, except the following:
 .NET applications and applications written in C++Builder require the

corresponding IDE to be launched on the client workstation if they use UniDAC
Trial Edition
 If you are deploying a project built with UniDAC Trial Edition, you will need to

include the UniDAC library files in your application deployment package. For
more information, consult the Deployment topic.

© 1997-2013 Devart. All Rights Reserved.

13 Getting Support

This page lists several ways you can find help with using UniDAC and describes the
UniDAC Priority Support program.

Support Options

There are a number of resources for finding help on installing and using UniDAC.
 You can find out more about UniDAC installation or licensing by consulting the

Licensing and Installation sections.
 You can get community assistance and technical support on the UniDAC

Community Forum.
 You can get advanced technical assistance by UniDAC developers through the

UniDAC Priority Support program.

If you have a question about ordering UniDAC or any other Devart product, please
contact sales@devart.com.

mailto:sales@devart.com
http://www.devart.com/forums/
http://www.devart.com/forums/
mailto:sales@devart.com

Getting Support 49

© 2013 Enter your company name

UniDAC Priority Support

UniDAC Priority Support is an advanced product support service for getting
expedited individual assistance with UniDAC-related questions from the UniDAC
developers themselves. Priority Support is carried out over email and has two
business days response policy. Priority Support is available for users with an active
UniDAC Subscription.
To get help through the UniDAC Priority Support program, please send an email to
unidac@devart.com describing the problem you are having. Make sure to include
the following information in your message:
 The version of Delphi or C++Builder you are using.
 Your UniDAC Registration number.
 Full UniDAC edition name and version number. You can find both of these in the

About sheet of TUniConnection Editor or from the server | About menu.
 Versions of the server and client you are using.
 A detailed problem description.
 If possible, a small test project that reproduces the problem. Please include

definitions for all database objects and avoid using third-party components.

© 1997-2013 Devart. All Rights Reserved.

14 Using UniDAC

14.1 Connecting to Database

This topic describes the procedure of connecting to databases with different
providers, and meaning of connection parameters.
 Common connection properties

o Provider

o Username and Password

o Server

o Database

o Port

 Provider-specific properties

o Oracle

o SQL Server

o MySQL

o InterBase

o PostgregSQL

o SQLite

Common connection properties

Each database server requires its own set of parameters for connection (username,
password, etc.). Some of the parameters are the same for several servers, but the
parameter meaning may vary depending on the server. UniDAC provides all types of
parameters for supported database servers. If a parameter is not used for a certain

mailto:unidac@devart.com

Universal Data Access Components50

© 2013 Enter your company name

provider, it will be disabled in the connection dialog and not used for connection.
UniDAC supports the following parameters:

Provider

This is the first parameter that should be set. It specifies the provider that will be
used for connection, and other parameters that will be available.

Username and Password

These properties are used for each database provider to authenticate the client
application.

Server

Commonly this property is used to provide the name or the IP address of the
computer in the network on which the database sever is located. If the Server
property is empty for SQL Server, MySQL, and InterBase providers, UniDAC will try
to connect to localhost.
 Oracle - in the Client mode you should specify the server name which appears in

the tnsnames.ora configuration file. You can also set the HomeName option to
specify which of the installed clients to use in the Client mode.
If you are connecting to the Oracle server in the Direct mode, value of the
Server property should be assigned in special format: Host:Port:SID. Host is the
server's IP address or DNS name, Port is the port number that the server listens
to, SID is the Oracle System Identifier of the server.
 SQL Server - you should specify the computer name or IP address of the

computer in the network which is running SQL Server. If your SQL Server uses a
port different from the default one, you can connect to it specifying the port
number in the following way: HostName,PortNumber.
 ASE, MySQL, and PostgreSQL - you should specify the computer name or IP

address of the computer in the network which is running database server.
 ODBC - you should specify ODBC data source name (DSN), name of a file with

data source information (File DSN), or ODBC connection string
 DB2 - you should specify the database name to the Server property

Database

This property is used for Access, Advantage, ASE, DBF, InterBase, MySQL,
NexusDB, PostgreSQL, SQL Server, and SQLite providers. It specifies initial
database for the connection. On ASE, MySQL, and SQL Server the Database value
can be changed when the connection is active without reconnect. If the Database is
not assigned, the behaviour of UniDAC will depend on the selected provider:
 MySQL - the current database will not be selected. It means that you will need

to explicitly specify the database name in your queries.
 SQL Server and ASE - the default database for the current SQL Server login will

be used as a default database for the connection. For connecting to SQL Server
Compact Edition this property is used to provide the database file name.

Port

This property is used for ASE, MySQL, and PostgreSQL providers. It specifies the
port number for TCP/IP connection.
 MySQL - The default value is 3306.
 PostgreSQL - The default value is 5432.

Using UniDAC 51

© 2013 Enter your company name

 ASE - The default value is 5000.

Provider-specific properties

Along with the connection options described above, there are several specific
options that manage connection behaviour for each provider. These options are
described in the Provider-specific Notes articles for each provider: Oracle, SQL
Server, MySQL, InterBase, PostgreSQL, and SQLite. Open the article that
corresponds to the provider you are interested in, and find the specific options
description for TUniConnection in the article. Several important specific connection
options will be described below.

Oracle

With the Oracle provider you can connect to the server in two modes: the Client
mode, and the Direct mode. Connecting in the Client mode requires Oracle client to
be installed on the client computer. Connecting in the Direct mode does not require
Oracle client, however, this mode has certain limitations. For more information,
refer to the Connecting in Direct mode section in the article Using UniDAC with
Oracle.

SQL Server

The SQL Server provider can connect through one of the three client types that can
be changed using the OLEDBProvider specific option of TUniConnection. By default
this option is set to prAuto. This value means that the provider will try to open the
SQL Native Provider first. If this provider is not available, the OLE DB provider will
be opened. In order to connect to SQL Server Compact Edition, the OLEDBProvider
option must be set to prCompact. This value gives effect to all specific options which
names start with Compact. The version of SQL Server Compact Edition to be used
should be specified in the CompactVersion specific option. By default version of SQL
Server Compact Edition will be chosen in accordance with the database file version.
If the file does not exist, or the file is not a valid database file, the CompactVersion
option will be used to determine which server version to load.

MySQL

The MySQL provider can connect to MySQL server directly or using the client library
libmysqld.dll. This behaviour is controlled by the Direct specific option. By default,
Direct is set to True. If you switch Direct to False, you will need to deploy libmysqld.
dll with your application.
In order to connect to a database with MySQL Embedded server, you should switch
the value of the Embedded specific option to True. Its default value is False. If
Embedded is set to True, the value of Direct is ignored. The Embedded Server
library with the share directory should be deployed with the application. The path to
data should be specified in the configuration file of Embedded Server.

InterBase

The InteBase provider can connect to the server through such network protocols as
TCP/IP, NetBEUI, and SPX. The network protocol that will be used for the connection
can be specified with the

Protocol specific option.

Universal Data Access Components52

© 2013 Enter your company name

PostgreSQL

The PostgreSQL provider connects to PostgreSQL server directly and does not use
the PostgreSQL client library.

SQLite

SQLite creates the database file automatically if it does not exist.

©

 1997-2013 Devart. All Rights Reserved.

14.2 Data Types

This topic describes in what way server data types are mapped to the Delphi field
types and demonstrates common approaches for working with large data types.
The table below represents the server data types mapped to certain Delphi field
types by default. There are several options that change the default mapping. These
changes are reflected in the table as footnotes.

Del
phi
Typ
e

Ora
cle
Typ
es

SQL
Ser
ver
Typ
es

MyS
QL
Typ
es
[1]

Inte
rBa
se
Typ
es

Post
gre
SQL
Typ
es

SQL
ite
Typ
es

ODB
C
Typ
es

DB2
Typ
es

Acc
ess
Typ
es

Adv
anta
ge
Typ
es

ASE
Typ
es

Nex
usD
B

ftSm
alli
nt

NUMB
ER
(p,
0)
[2]
(p <
5)

SMAL
LINT

TINY
INT
(M)
(M >
1)
SMAL
LINT

SMAL
LINT

SMAL
LINT

TINY
INT
SMAL
LINT

SQL_
SMAL
LINT

SMAL
LINT

SMAL
LINT

SHOR
T

SMAL
LINT

SHOR
TINT
,
SMAL
LINT

ftWo
rd

- TINY
INT

TINY
INT
(M)
UNSI
GNED
(M >
1)
SMAL
LINT
UNSI
GNED
YEAR

- - - SQL_
TINY
INT

- BYTE - TINY
INT

WORD
,
BYTE
,
TINY
INT

Using UniDAC 53

© 2013 Enter your company name

ftIn
tege
r

NUMB
ER
(p,
0)
[2]
(4 <
p <
10)

INT MEDI
UMIN
T
MEDI
UMIN
T
UNSI
GNED
INT

INTE
GER

INTE
GER

INTE
GER
INT

SQL_
INTE
GER

INTE
GER

INTE
GER

INTE
GER

INT INTE
GER,
AUTO
INC,
RECR
EV

ftLa
rgei
nt

NUMB
ER
(p,
0)
[2]
(9 <
p <
19)

BIGI
NT

BIT
INT
UNSI
GNED
BIGI
NT
BIGI
NT
UNSI
GNED

BIGI
NT

BIGI
NT

BIGI
NT

SQL_
BIGI
NT

BIGI
NT

- - BIGI
NT

LARG
EINT
,
DWOR
D

ftFl
oat

NUMB
ER
(p,
s)
[2]
BINA
RY
FLOA
T
(FLO
AT)
BINA
RY
DOUB
LE

DECI
MAL
(p,
s)
[3]
FLOA
T
REAL

DECI
MAL
(p,
s)
[3]
FLOA
T
DOUB
LE

NUMB
ER
(p,
s)
[3]
FLOA
T
DOUB
LE
PREC
ISIO
N

DECI
MAL
[3]
REAL
DOUB
LE
PREC
ISIO
N

DECI
MAL
(p,
s)
[3]
FLOA
T
DOUB
LE
PREC
ISIO
N

SQL_
DECI
MAL
(p,
s)
SQL_
NUME
RIC
(p,
s)
SQL_
REAL
SQL_
FLOA
T
SQL_
DOUB
LE

DECI
MAL
(p,
s)
REAL
DOUB
LE

DECI
MAL
(p,
s)
DOUB
LE

DECI
MAL
(p,
s)
DOUB
LE
CURD
OUBL
E
MONE
Y

DECI
MAL
(p,
s)
[3]
FLOA
T
REAL
MONE
Y
SMAL
LMON
EY

FLOA
T,
DOUB
LE
PREC
ISIO
N,
EXTE
NDED

ftBC
D

NUMB
ER
(p,
s)
[2]
(p <
15)
and
(s <
5)

DECI
MAL
(p,
s)
[3]
(p <
15)
and
(s <
5)

DECI
MAL
(p,
s)
[3]
(p <
15)
and
(s <
5)

DECI
MAL
(p,
s)
[3]
(p <
15)
and
(s <
5)

DECI
MAL
[3]

DECI
MAL
[3]

SQL_
DECI
MAL
SQL_
NUME
RIC

DECI
MAL

DECI
MAL

DECI
MAL
CURD
OUBL
E
MONE
Y

DECI
MAL
[3]
MONE
Y
SMAL
LMON
EY

DECI
MAL

Universal Data Access Components54

© 2013 Enter your company name

ftFM
TBcd

NUMB
ER
(p,
s)
[2]
(14
< p
<
39)
and>
(4 <
s <
39)

DECI
MAL
(p,
s)
(14
< p
<
39)
and
(4 <
s <
39)

DECI
MAL
(p,
s)
[3]
(14
< p
<
39)
and
(4 <
s <
39)

DECI
MAL
(p,
s)
[3]
(14
< p
<
19)
and
(4 <
s <
19)

DECI
MAL
[3]

DECI
MAL
[3]

SQL_
DECI
MAL
SQL_
NUME
RIC

DECI
MAL

DECI
MAL

DECI
MAL
CURD
OUBL
E
MONE
Y

DECI
MAL
[3]
MONE
Y
SMAL
LMON
EY

-

ftCu
rren
cy

- MONE
Y
SMAL
LMON
EY

- - MONE
Y

MONE
Y

- - - - - MONE
Y

ftBo
olea
n

- BIT TINY
INT
[4]
BOOL
[4]
BOOL
EAN
[4]

BOOL
EAN

BOOL
EAN

BOOL
EAN

SQL_
BIT

- BOOL
EAN

LOGI
CAL

BIT BOOL
EAN

ftSt
ring

VARC
HAR2
NVAR
CHAR
2
VARC
HAR
CHAR
NCHA
R
RAW
[5]
INTE
RVAL
DAY
TO
SECO
ND
INTE
RVAL
DAY
TO
MONT
H
ROWI
D
UROW
ID

CHAR
VARC
HAR

CHAR
VARC
HAR
ENUM
SET
BINA
RY
[6]
VARB
INAR

Y[6]

CHAR
VARC
HAR

CHAR
VARC
HAR

CHAR
VARC
HAR

SQL_
CHAR
SQL_
VARC
HAR

CHAR
VARC
HAR

TEXT CHAR
CICH
AR
VARC
HAR

CHAR
VARC
HAR
NCHA
R
NVAR
CHAR

VARC
HAR,
NULL
STRI
NG,
SHOR
TSTR
ING,
CHAR
,
SING
LECH
AR

Using UniDAC 55

© 2013 Enter your company name

ftWi
deSt
ring

See
note
[7]

NCHA
R
NVAR
CHAR

See
note
[7]

See
note
[7]

See
note
[7]

See
note
[7]

SQL_
WCHA
R
SQL_
WVAR
CHAR
Aslo
See
note
[7]

GRAP
HIC
VARG
RAPH
IC
Also
See
note
[7]

See
note
[7]

See
note
[7]

UNIC
HAR
UNIV
ARCH
AR
Aslo
See
note
[7]

NSIN
GLEC
HAR,
NCHA
R,
NVAR
CHAR

ftMe
mo

LONG
Also
see
note
[8]

TEXT
NTEX

T[9]

TINY
TEXT
TEXT
MEDI
UMTE
XT
LONG
TEXT

BLOB
TEXT

TEXT TEXT
CLOB

SQL_
LONG
VARC
HAR

LONG
VARC
HAR
CLOB

MEMO MEMO TEXT TEXT
CLOB

ftWi
deMe
mo

See
note
[10]

NTEX
T
[11]

See
note
[10]

See
note
[10]

See
note
[10]

See
note
[10]

SQL_
WLON
GVAR
CHAR
See
note
[10]

LONG
VARG
RAPH
IC
DBCL
OB
See
note
[10]

See
note
[10]

See
note
[10]

UNIT
EXT
Also
See
note
[10]

NCLO
B

ftOr
aClo
b

CLOB
NCLO
B

- - - - - - - - - - NCLO
B

-

ftBl
ob

LONG
RAW

IMAG
E

TINY
BLOB
BLOB
MEDI
UMBL
OB
LONG
BLOB
Spat
ial
Data
Type
s

BLOB
BINA
RY

BYTE
A

BLOB SQL_
LONG
VARB
INAR
Y

LONG
VARC
HAR
FOR
BIT
DATA
BLOB

- BLOB IMAG
E

BLOB
,
IMAG
E

ftOr
aBlo
b

BLOB - - - LARG
E
OBJE
CT

- - - - - - -

ftBy
tes

- BINA
RY
TIME
STAM
P

BINA
RY

- - - SQL_
BINA
RY

CHAR
FOR
BIT
DATA

- RAW BINA
RY

BYTE
ARRA
Y

Universal Data Access Components56

© 2013 Enter your company name

ftVa
rByt
es

RAW VARB
INAR
Y

VARB
INAR
Y

CHAR
VARC
HAR
(CHA
RSET
=
OCTE
TS)

- BINA
RY
VARB
INAR
Y

SQL_
VARB
INAR
Y

VARC
HAR
FOR
BIT
DATA

- VARB
INAR
Y

VARB
INAR
Y

-

ftDa
te

- - DATE DATE DATE DATE SQL_
TYPE
_DAT
E

DATE - DATE - DATE

ftDa
teTi
me

DATE DATE DATE
TIME

TIME
STAM
P

TIME
STAM
P

TIME
STAM
P
DATE
TIME

SQL_
TYPE
_TIM
ESTA
MP

TIME
STAM
P

DATE TIME
STAM
P

DATE DATE
TIME

ftTi
me

- - TIME TIME TIME TIME SQL_
TYPE
_TIM
E

TIME - TIME - TIME

ftTi
meSt
amp

TIME
STAM
P
TIME
STAM
P
WITH
TIME
ZONE

- - - - - - - - - - -

ftCu
rsor

REF
CURS
OR

- - - REFC
URSO
R

- - - - - - -

ftGu
id

- UNIQ
UEID
ENTI
FIER

- - - - - - - - - GUID

ftVa
rian
t

- SQL_
VARI
ANT

- - - - - - - - - -

NOT
SUPP
ORTE
D

BFIL
E
OBJE
CT
XML

CURS
OR
XML
TABL
E

- - - - SQL_
TYPE
_UTC
DATE
TIME
SQL_
TYPE
_UTC
TIME
SQL_
INTE
RVAL
SQL_
GUID

- - - - -

Using UniDAC 57

© 2013 Enter your company name

[1] - If the FieldsAsString option is True, all fields except BLOB and TEXT fields are
mapped to ftString
[2] - The Oracle provider maps the NUMBER data type with different precision and
scale to certain Delphi types depending on the provider options in the following
way:

1. if scale equals zero, provider checks values of the specific options to
choose the correct Delphi type in the following order:

1.1 field precision is less or equal PrecisionSmallint (default is 4)

- uses ftSmallint;

1.2 field precision is less or equal PrecisionInteger (default is 9) -

uses ftInteger;

1.3 field precision is less or equal PrecisionLargeInt (default is

18) - uses ftLargeint;

2. if scale is greater than zero, the appropriate Delphi type is chosen
using the following sequence of rules:.

2.1 field precision is less or equal PrecisionFloat (default is 0) -

uses ftFloat;

2.2 EnableBCD is True and field precision, scale is less or equal

PrecisionBCD (default is 14,4) - uses ftBCD;

2.3 EnableFMTBCD is True and field precision, scale is less or

equal PrecisionFMTBCD (default is 38,38) - uses ftFMTBCD;

2.4 uses ftFloat.

[3] - The appropriate Delphi type is chosen using the following sequence of rules:
1.EnableBCD is True and field precision, scale is less or equal 14,4 -

uses ftBCD;
2.EnableFMTBCD is True - uses ftFMTBCD;
3.uses ftFloat.

[4] - If the EnableBoolean option is True
[5] - If the RawAsString option is True
[6] - If the BinaryAsString is True
[7] - If the UseUnicode option is True, all server types mapped to ftString will be
mapped to ftWideString.
[8] - If the LongStrings option is False, and the field length is greater than 255, all
server types mapped to ftString will be mapped to ftMemo.
[9] - For all Delphi versions prior to BDS 2006.

[10] - If the UseUnicode option is True, in BDS 2006 and later versions all server
types mapped to ftMemo will be mapped to ftWideMemo.

[11] - For BDS 2006 and higher IDE versions.

Working with large objects

Universal Data Access Components58

© 2013 Enter your company name

Server field types used to store large objects (BLOB, LOB, TEXT, etc.) are
represented in Delphi as TBlobField and TMemoField. The TWideMemoField field was
added in Delphi 2006.


TBlobField is used to store binary objects.


TMemoField is used to store single-byte and multibyte character data using

database character set.


TWideMemoField is used to store Unicode (UTF-16) data.

Generally there is no difference in working with these three field types in UniDAC.
The Pictures and Text demos demonstrate working with datasets that contain
TBlobField and TMemoField. If you want to insert a BLOB value into a table directly
(without opening a dataset), please take a look at the example below. It

 demonstrates inserting a new record into the UniDAC_BLOB

 table with the TUniSQL component:

UniSQL.SQL.Text := 'INSERT INTO UniDAC_BLOB(ID, Title, Picture) VALUES (1, ''A new picture'', :BLOBValue)'

UniSQL.ParamByName('BLOBValue').LoadFromFile('World.bmp', ftBlob);

UniSQL.Execute;

If a BLOB value must be formed in you program, without using a file, and inserted
into a field, you can use the LoadFromStrem method:

var

 Stream: TStringStream;

begin

 Stream := TStringStream.Create('');
 try
 Stream.WriteString('The first line' + #13#10);
 Stream.WriteString('The second line');
 UniSQL.SQL.Text := 'INSERT INTO UniDAC_Text(ID, Title, TextField) VALUES (1, ''A new text value'', :TEXTValue)';
 UniSQL.ParamByName('TEXTValue').LoadFromStream(Stream, ftMemo);
 UniSQL.Execute;
 finally
 Stream.Free;
 end;

A BLOB values can be retrieved from the server in two ways. The first way is using a
SELECT query from the table containing a BLOB field:

UniQuery.SQL.Text := 'SELECT TextField FROM UniDAC_Text WHERE ID = 1';
UniQuery.Open;
(UniQuery.FieldByName('TextField') as TBlobField).SaveToFile('A_file_name');
UniQuery.Close;

Using UniDAC 59

© 2013 Enter your company name

The second way is to use output parameters like in the following example. Note that
the query may differ depending on your database server.

UniSQL.SQL.Text := 'SELECT :TEXTValue = TextField FROM UniDAC_Text WHERE ID = 1';
UniSQL.ParamByName('TEXTValue').ParamType := ptOutput;
UniSQL.Execute;
ShowMessage(UniSQL.ParamByName('TEXTValue').AsString);

See Also
 TUniBlob
 Pictures demo
 Text demo

© 1997-2013 Devart. All Rights Reserved.

14.3 Updating data with UniDAC

This topic describes common approaches to data edit with dataset components of
UniDAC.
 Automatic data updating
 Extended setup of data updating
 Caching updates
 Default values/expressions
 Autoincrement values generating
 Getting newest data on time

Automatic data updating

TUniTable, TUniQuery, and TUniStoredProc are UniDAC components that allow
retrieving and editing data. To edit data with each of the components, specify key
field names in the KeyFields property. If KeyFields is an empty string, Oracle,
PostgreSQL, InterBase, SQLite, and all ODBC-based providers will try to request
information about primary keys from the server sending an additional query (this
may negatively affect the performance). SQL Server and MySQL providers will use
the metainformation sent by the server together with data. The SQL Server provider
has the UniqueRecords option that allows automatically requesting primary key
fields from the table if they were omitted in the query.
If the dataset to be opened has no fields that uniquely identify a record, this
problem can be solved with Oracle, Firebird 2.0, PostgreSQL, and SQLite servers by
the server means. With the Oracle and SQLite servers you should add the RowID
column to your query. With Firebird 2.0 - DB_KEY. With PostgreSQL server OID
column can be used as key field if your table is created with OIDs. More information
about these fields you will find in the documentation of the correspondent server.

Extended setup of data updating

For a dataset having data from several tables, only one table will be updatable by
default. You should specify the table name to be updatable in the UpdatingTable
property, otherwise the table to which belongs the first field in the field list will be
updatable. If the SetFieldsReadOnly option is set to True (by default), fields that are
not used in automatically generated update SQL statements are marked read-only.
With the Oracle, PostgreSQL, and all ODBC-based providers for complicated queries
(statements that use multiple tables, Synonyms, DBLinks, aggregated fields) we
recommend to keep the ExtendedFieldsInfo option enabled.
If Insert/Post, Update, or RefreshRecord operation has affected more than one

Universal Data Access Components60

© 2013 Enter your company name

record, UniDAC raises an exception. To suppress such exceptions, you should set
the StrictUpdate option to False.
For more flexible control over data modifications you can fill update SQL
statements. They are represented by the SQLInsert, SQLUpdate, SQLDelete, and
SQLRefresh properties and are executed automatically on Insert/Post, Edit/Post,
Delete, and Refresh operations. At design-time you can generate default update
SQL statements at the SQL Generator tab in component editor. The generated
statements can be modified corresponding your needs. But if the update queries are
generated dynamically for each record, only changed values are sent to the server.
For some particular cases this functionality is not enough. It can be extended with
the TUniUpdateSQL component. TUniUpdateSQL allows associating a separate
TUniSQL/TUniQuery/TUniStoredProc component for each update operation.

Caching updates

UniDAC allows caching updates at the client (so-called Cashed Updates mode), and
then post all updates in a batch. It means that changes are not reflected at the
server immediately after calling Post or Delete. All cached changes are posted to the
server after calling the ApplyUpdates method. The UpdateBatchSize option lets
setting up the number of changes to be posted at the same time.

Default values/expressions

If you have defined default values or expressions for columns in a database table,
you can setup UniDAC so that it requests these expressions from the server. These
expressions will be assigned to the DefaultExpression property of TField objects. If
the DefaultExpression values have already been filled, they are replaced. This
behaviour is controlled by the DefaultValues option, which is disabled by default.

Autoincrement values generating

When editing a dataset, it is often convenient not to fill key field values manually
but automatically generate them. There are three ways to do it.

The first way, the most usable one, is to use server means for automatic generating
of the key field values.

SQL Server, MySQL, and SQLite allow defining autoincrement columns in the table.
This does not require additional handling at the client. For ASE, Oracle, PostgreSQL,
and InterBase providers it is necessary to specify the
KeySequence (KeyGenerator for InterBase) specific option. Automatically generated
values are reflected in the dataset automatically.
The second way is to generate and fill the key field value in the BeforePost event
handler. As a rule this way requires executing a query to retrieve some information
from the server. So this way may be useful only in some particular cases.
The third way is to create the AFTER INSERT trigger that fills the field with the
appropriate value. But there is a problem with returning the value generated by the
trigger. Although this problem can be solved (see the next paragraph in this topic),
this approach is considered nonoptimal. So try choosing another approach if
possible.
However, retrieving generated values can be disabled for SQL Server provider with
the QueryIdentity specific option. This should increase performance of records
inserting.

Using UniDAC 61

© 2013 Enter your company name

Getting newest data on time

For certain situations UniDAC allows automatically refreshing records in the dataset
in order to keep their values up-to-date.

With
RefreshOptions
 you can make UniDAC refresh the current record before editing, after inserting or
deleting. It is done by executing an additional query.

The DMLRefresh option allows refreshing the current record after insert or update
similarly to RefreshOptions, but it works in a different way. This allows achieving
higher performance than with RefreshOptions. DMLRefresh is not supported by the
MySQL, SQLite, and ODBC-based providers.

If you want to control which fields of the current record need to be refreshed after
insert or update, you should do the following: define in your update queries output
parameters with names that correspond the field names in your dataset, and set the
ReturnParams option to True. After the update query has been executed, dataset
reads values of the output parameters and puts them into fields with the
correspondent names.

© 1997-2013 Devart. All Rights Reserved.

14.4 Master/Detail Relationships

Master/detail (MD) relationship between two tables is a very widespread one. So it
is very important to provide an easy way for database application developer to work
with it. Lets examine how UniDAC implements this feature.
Suppose we have classic MD relationship between "Department" and "Employee"
tables.
"Department" table has field Dept_No. Dept_No is a primary key.
"Employee" table has a primary key EmpNo and foregin key Dept_No that binds
"Employee" to "Department".
It is necessary to display and edit these tables.
UniDAC provides two ways to bind tables. First code example shows how to bind
two TCustomUniDataSet components into MD relationship via parameters.

procedure TForm1.Form1Create(Sender: TObject);
var
 Master, Detail: TUniQuery;
 MasterSource: TDataSource;
begin
 // create master dataset
 Master := TUniQuery.Create(Self);
 Master.SQL.Text := 'SELECT * FROM Department';
 // create detail dataset
 Detail := TUniQuery.Create(Self);
 Detail.SQL.Text := 'SELECT * FROM Employee WHERE Dept_No = :Dept_No';
 // connect detail dataset with master via TDataSource component
 MasterSource := TDataSource.Create(Self);
 MasterSource.DataSet := Master;
 Detail.MasterSource := MasterSource;

Universal Data Access Components62

© 2013 Enter your company name

 // open master dataset and only then detail dataset
 Master.Open;
 Detail.Open;
end;

Pay attention to one thing: parameter name in detail dataset SQL must be equal to
the field name in the master dataset that is used as foreign key for detail table.
After opening detail dataset always holds records with Dept_No field value equal to
the one in the current master dataset record.
There is an additional feature: when inserting new records to detail dataset it
automatically fills foreign key fields with values taken from master dataset.
Now suppose that detail table "Department" foregin key field is named DepLink but
not Dept_No. In such case detail dataset described in above code example will not
autofill DepLink field with current "Department".Dept_No value on insert. This issue
is solved in second code example.

procedure TForm1.Form1Create(Sender: TObject);
var
 Master, Detail: TUniQuery;
 MasterSource: TDataSource;
begin
 // create master dataset
 Master := TUniQuery.Create(Self);
 Master.SQL.Text := 'SELECT * FROM Department';
 // create detail dataset
 Detail := TUniQuery.Create(Self);
 Detail.SQL.Text := 'SELECT * FROM Employee';
 // setup MD
 Detail.MasterFields := 'Dept_No'; // primary key in Department
 Detail.DetailFields := 'DepLink'; // foreign key in Employee
 // connect detail dataset with master via TDataSource component
 MasterSource := TDataSource.Create(Self);
 MasterSource.DataSet := Master;
 Detail.MasterSource := MasterSource;
 // open master dataset and only then detail dataset
 Master.Open;
 Detail.Open;
end;

In this code example MD relationship is set up using MasterFields and DetailFields
properties. Also note that there are no WHERE clause in detail dataset SQL.
To defer refreshing of detail dataset while master dataset navigation you can use
DetailDelay option.
Such MD relationship can be local and remote, depending on the
TCustomDADataSet.Options.LocalMasterDetail option. If this option is set to True,
dataset uses local filtering for establishing master-detail relationship and does not
refer to the server. Otherwise detail dataset performs query each time when record
is selected in master dataset. Using local MD relationship can reduce server calls
number and save server resources. It can be useful for slow connection.
CachedUpdates mode can be used for detail dataset only for local MD relationship.
Using local MD relationship is not recommended when detail table contains too
many rows, because in remote MD relationship only records that correspond to the
current record in master dataset are fetched. So, this can decrease network traffic
in some cases.

See Also
 TCustomDADataSet.Options

Using UniDAC 63

© 2013 Enter your company name

 TMemDataSet.CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

14.5 Network Tunneling

Usually when a client needs to connect to server it is assumed that direct
connection can be established. Nowadays though, due to security reasons or
network topology, it is often necessary to use a proxy or bypass a firewall. This
article describes different ways to connect to MySQL server with UniDAC.
 Direct connection
 Connection through HTTP tunnel

o Connection through proxy and HTTP tunnel

 Additional information

Direct connection

Direct connection to server means that server host is accessible from client without
extra routing and forwarding. This is the simplest case. The only network setting
you need is the host name and port number. This is also the fastest and most
reliable way of communicating with server. Use it whenever possible.
The following code illustrates the simplicity:

UniConnection := TUniConnection.Create(self);
UniConnection.ProviderName := 'MySQL';
UniConnection.Server := 'localhost';
UniConnection.Port := 3306;
UniConnection.Username := 'root';
UniConnection.Password := 'root';
UniConnection.Connect;

Connection through HTTP tunnel

Sometimes client machines are shielded by a firewall that does not allow you to
connect to server directly at the specified port. If the firewall allows HTTP
connections, you can use UniDAC together with HTTP tunneling software to connect
to MySQL server.
UniDAC supports HTTP tunneling based on the PHP script.
An example of the web script tunneling usage can be the following: you have a
remote website, and access to its database through the port of the database server
is forbidden. Only access through HTTP port 80 is allowed, and you need to access
the database from a remote computer, like when using usual direct connection.
You need to deploy the tunnel.php script, which is included into the provider
package on the web server. It allows access to the database server to use HTTP
tunneling. The script must be available through the HTTP protocol. You can verify if
it is accessible with a web browser. The script can be found in the HTTP subfolder of
the installed provider folder, e. g. %Program Files%\Devart\UniDac for Delphi X
\HTTP\tunnel.php. The only requirement to the server is PHP 5 support.
To connect to the database, you should set TUniConnection parameters for usual
direct connection, which will be established from the web server side, the Protocol
specific MySQL option to mpHttp, and set the following parameters, specific for the
HTTP tunneling:

Specific
Option

Manda
tory

Meaning

Universal Data Access Components64

© 2013 Enter your company name

HttpUrl Yes
Url of the tunneling PHP script. For example, if the script
is in the server root, the url can be the following: http://
localhost/tunnel.php.

HttpUsername,
HttpPassword

No
Set this properties if the access to the website folder with
the script is available only for registered users
authenticated with user name and password.

Connection through proxy and HTTP tunnel

Consider the previous case with one more complication.
HTTP tunneling server is not directly accessible from client machine. For example,
client address is 10.0.0.2, server address is 192.168.0.10, and the MySQL server
listens on port 3307. The client and server reside in different networks, so the client
can reach it only through proxy at address 10.0.0.1, which listens on port 808. In
this case in addition to the Http specific options you have to setup the Proxy specific
options as follows:

UniConnection := TUniConnection.Create(self);
UniConnection.ProviderName := 'MySQL';
UniConnection.Server := '192.168.0.10';
UniConnection.Port := 3307;
UniConnection.Username := 'root';
UniConnection.Password := 'root';
UniConnection.SpecificOptions.Values['Protocol'] := 'mpHttp';
UniConnection.SpecificOptions.Values['HttpUrl'] := 'http://server/tunnel.php';
UniConnection.SpecificOptions.Values['ProxyHostname'] := '10.0.0.1';
UniConnection.SpecificOptions.Values['ProxyPort'] := '808';
UniConnection.SpecificOptions.Values['ProxyUsername'] := 'ProxyUser';
UniConnection.SpecificOptions.Values['ProxyPassword'] := 'ProxyPassword';
UniConnection.Connect;

Note that setting the Proxy specific options automatically enables proxy server
usage.

Additional information

Keep in mind that traffic tunneling or encryption always increase CPU usage and
network load. It is recommended that you use direct connection whenever possible.

©

 1997-2013 Devart. All Rights Reserved.

14.6 Executing Stored Procedures

This topic describes approaches for executing stored procedures with UniDAC.
 What component to choose?

o TUniConnection

o TUniSQL

o TUniQuery

o TUniStoredProc

 Usage of stored procedure parameters

Using UniDAC 65

© 2013 Enter your company name

o Parameter types

o Passing default parameter values

Stored procedures in UniDAC can be executed with one of the following
components: TUniConnection, TUniSQL, TUniQuery, TUniStoredProc. Below you will
find the description of working with stored procedure using these components
starting with the simplest approach.

TUniConnection

The simplest way to execute a stored procedure is the TUniConnection component,
but it has several limitations. TUniConnection does not have properties like SQL,
StoredProcName, or Params. So you will need to provide stored procedure name
and parameter values each time you need to execute it. TUniConnection does not
support output parameters, however you can get a result parameter from a
function. Also TUniConnection does not support preparation. Stored procedures are
executed with the ExecProc and ExecProcEx methods.
Therefore, if you need to execute a stored procedure that returns neither record set
nor output parameters only once, the TUniConnection component is an optimal
choice.

TUniSQL

TUniSQL is a separate component dedicated to execute commands that do not
return record sets. It has no data storage, therefore it consumes a bit less memory
than TUniQuery or TUniStoredProc and works a bit faster. To execute a stored
procedure, an appropriate command must be assigned to the SQL property of
TUniSQL. It can be assigned manually, or created with the CreateProcCall method.
The CreateProcCall method accepts a stored procedure name, gets the description
of a stored procedure from the server, and generates SQL command with
parameters. The generated command is automatically assigned to the SQL property.
Parameters can be accessed both at design time and run time using properties such
as Params, ParamByName, etc.
Comparing to the previous method of stored procedures execution, TUniSQL
supports all kinds of parameters (INPUT, OUTPUT, etc.).For repeatable executions of
a stored procedure, you do not need to pass a SQL command on each execution. It
is stored in the SQL property.
Each command of TUniSQL can be prepared. In some cases preparation improves
performance of execution.
TUniSQL is a powerful component that is an appropriate choice for a stored
procedure that does not return result sets, needs to be executed multiple times, or
returns output parameters.

TUniQuery

One more component that lets you execute stored procedures is TUniQuery. In
addition to the abilities provided by TUniSQL, TUniQuery allows to obtain record
sets from stored procedures and modify them. If a stored procedure returns
multiple record sets, all of them can be accessed sequentially. The Open method
opens the first record set. The OpenNext method closes the current record set and
opens the next one. If the server has sent enough metainformation about the
query, obtained dataset will be editable. Otherwise to get an editable dataset you
should setup properties such as SQLDelete, SQLInsert, and others properly.
The TUniQuery is a good choice for executing stored procedures that return record
sets.

Universal Data Access Components66

© 2013 Enter your company name

TUniStoredProc

TUniStoredProc is a component designed specially for working with stored
procedures. If you want to execute a stored procedure, just assign its name to the
StoredProcName property, call PrepareSQL to describe parameters, assign
parameter values, and call Execute. If the stored procedure has no input or input/
output parameters to be assigned, call to the PrepareSQL method is not necessary.
Other than that TUniStoredProc is similar to TUniQuery. It supports result sets,
output parameters, preparation, and can be initialized by the CreateProcCall
method.
TUniStoredProc is the most convenient component for working with stored
procedures that covers all necessary functionality.
There are several notes concerning parameters of stored procedures.

Parameter types

UniDAC supports four parameter types: input, output, input/output, and result.
TUniConnection can pass values of the input parameters to the server, and get the
result value from a function. If a parameter value is not assigned, the default value
will be provided if possible. If an unassigned parameter has no default value, an
error will be raised.
TUniSQL, TUniQuery, and TUniStoredProc components can handle all of these
parameter types. If an input parameter value is not assigned with one of these
components, the NULL value will be passed as a parameter value. Assigning of
output and result parameter values has no effect as they are not passed to the
server on execution, and after execute they will be replaced with values returned
from the server.

Passing default parameter values

Some stored procedures may have default values for parameters. If you want to
pass a default parameter value to a stored procedure, you should do the following:


with TUniConnection call the
ExecProcEx
 method omitting the names and values of the parameters to be initialized with

their default values;


with TUniConnection call the
ExecProc
 method omitting values of the last parameters to be initialized with their default

values;


with other components set the Bound property of the parameter to be initialized

with its default value to False.

If a parameter value in TUniSQL, TUniQuery, or TUniStoredProc is not assigned or
cleared, the NULL value will be passed as a parameter value. It is not the same as
assigning a default value.

Using UniDAC 67

© 2013 Enter your company name

©

 1997-2013 Devart. All Rights Reserved.

14.7 Transactions

This topic describes how transaction support is implemented in UniDAC. So, you
should be pretty familiar with transactions to understand how to control them with
UniDAC.
The local transactions are managed by the TUniConnection component with
StartTransaction, Commit, Rollback, and other methods. Each time you are about to
start a transaction, you should check whether it is active. You can do this using the
InTransaction property. Call to StartTransaction when the transaction is already
active will cause an exception. Here is a short example that demonstrates the
general approach for working with local transactions:

if not UniConnection.InTransaction then
 UniConnection.StartTransaction;
 try
 // Do some actions with database. For example:
 UniSQL1.Execute;
 UniSQL2.Execute;
 // Commit the current transaction to reflect changes in database if no errors were raised
 UniConnection.Commit;
 except
 // Rollback all changes in database made after StartTransaction if an error was raised
 UniConnection.Rollback;
 end;

After you have activated a transaction, all operations, including dataset opening,
will be performed within the context of the current transaction until you commit or
rollback it. If no transactions were started, changes performed by each operation
are reflected in database right after the operation is completed (so-called
AutoCommit mode).
The behaviour of each explicitly started transaction can be customized with
parameters passed to the overloaded StartTransaction method. You can specify the
isolation level for the transaction and whether this transaction will be editable.
There is a more detailed description of these parameters in the StartTransaction
topic.
UniDAC also supports working with Savepoints. The Savepoint method lets you to
define a named savepoint within a transaction. You can use the savepoint name in
the RollbackToSavepoint method to rollback changes in the database to the actual
state at the point of time the savepoint was made. Call to RollbackToSavepoint
keeps the current transaction active.
The CommitRetaining and RollbackRetaining methods are similar to Commit and
Rollback, but they keep the current transaction active. It means that you will not
need to call StartTransaction to keep working in transaction like you do with the
Commit and Rollback methods. Functionality of CommitRetaining and
RollbackRetaining is supported by InterBase/Firebird/Yaffil servers. For other
servers this functionality is emulated by subsequent call to StartTransaction after
Commit or Rollback.
InterBase-like servers support several simultaneous active transactions within a
single connection and require a transaction to be active when opening a cursor. You

Universal Data Access Components68

© 2013 Enter your company name

should not take care of this, as UniDAC encapsulates these peculiarities letting you
work in a way similar to the way of working with other database servers. If you
want to involve abilities of InterBase servers to run parallel transactions, you should
place several TUniTransaction components onto the form and setup properties of
TCustomUniDataSet descendants such as Transaction and UpdateTransaction with
these components. The Transaction and UpdateTransaction properties are used only
for the InterBase provider. For other providers these properties are ignored.
UniDAC uses MTS to manage distributed transactions with Oracle and Microsoft SQL
Server connections. Distributed transactions are controlled by the TUniTransaction
component. You can add connections to a distributed transaction context using the
AddConnection method. The MTS distributed transaction coordinator allows mixing
connections both to different servers and different server kinds.

begin
 UniConnection1.Connect;
 UniConnection2.Connect;
 UniTransaction.AddConnection(UniConnection1);
 UniTransaction.AddConnection(UniConnection2);
 UniTransaction.StartTransaction;
 UniSQL1.Connection := UniConnection1;
 UniSQL2.Connection := UniConnection2;
 try
 UniSQL1.Execute;
 UniSQL2.Execute;
 UniTransaction.Commit;
 except
 UniTransaction.Rollback;
 end;
end;

© 1997-2013 Devart. All Rights Reserved.

14.8 Working in an Unstable Network

﻿
The following settings are recommended for working in an unstable network:
TCustomDAConnection.Options.LocalFailover = True
TCustomDAConnection.Options.DisconnectedMode = True
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True
AutoCommit = True

These settings minimize the number of requests to the server. Using
TCustomDAConnection.Options.DisconnectedMode allows DataSet to work without
an active connection. It minimizes server resource usage and reduces connection
break probability. I. e. in this mode connection automatically closes if it is not
required any more. But every explicit operation must be finished explicitly. That
means each explicit connect must be followed by explicit disconnect. Read Working
with Disconnected Mode topic for more information.
Setting the FetchAll property to True allows to fetch all data after cursor opening
and to close connection. If you are using master/detail relationship, we recommend
to set the LocalMasterDetail option to True.
It is not recommended to prepare queries explicitly. Use the CachedUpdates mode
for DataSet data editing. Use the TCustomDADataSet.Options.UpdateBatchSize
property to reduce the number of requests to the server.

Using UniDAC 69

© 2013 Enter your company name

If a connection breaks, a fatal error occurs, and the OnConnectionLost event will be
raised if the following conditions are fulfilled:
 There are no active transactions;
 There are no opened and not fetched datasets;
 There are no explicitly prepared datasets or SQLs.

If the user does not refuse suggested RetryMode parameter value (or does not use
the OnConnectionLost event handler), UniDAC can implicitly perform the following
operations:
 Connect;
 DataSet.ApplyUpdates;
 DataSet.Open;

I.e. when the connection breaks, implicit reconnect is performed and the
corresponding operation is reexecuted. We recommend to wrap other operations in
transactions and fulfill their reexecuting yourself.
The using of Pooling in Disconnected Mode allows to speed up most of the
operations because of connecting duration reducing.

See Also

 FailOver demo
 Working with Disconnected Mode
 TCustomDAConnection.Options
 TCustomDAConnection.Pooling

© 1997-2013 Devart. All Rights Reserved.

14.9 Disconnected Mode

In disconnected mode a connection opens only when it is required. After performing
all server calls connection closes automatically until next server call is required.
Datasets remain opened when connection closes. Disconnected Mode may be useful
for saving server resources and operating in an unstable or expensive network.
Drawback of using disconnected mode is that each connection establishing requires
some time for authorization. If connection is often closed and opened it can slow
down application work. We recommend to use pooling to solve this problem. For
additional information see TCustomDAConnection.Pooling.
To enable disconnected mode set TCustomDAConnection.Options.DisconnectedMode
to True.
In disconnected mode a connection is opened for executing requests to the server
(if it was not opened already) and is closed automatically if it is not required any
more. If the connection was explicitly opened (the Connect method was called or
the Connected property was explicitly set to True), it does not close until the
Disonnect method is called or the Connected property is set to False explicitly.
The following settings are recommended to use for working in disconnected mode:
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the server.

Disconnected mode features

Universal Data Access Components70

© 2013 Enter your company name

If you perform a query with the FetchAll option set to True, connection closes when
all data is fetched if it is not used by someone else. If the FetchAll option is set to
false, connection does not close until all data blocks are fetched.
If explicit transaction was started, connection does not close until the transaction is
committed or rolled back.
If the query was prepared explicitly, connection does not close until the query is
unprepared or its SQL text is changed.

See Also

 TCustomDAConnection.Options
 FetchAll
 Devart.UniDac.TUniQuery.LockMode
 TCustomDAConnection.Pooling
 TCustomDAConnection.Connect
 TCustomDAConnection.Disonnect
 Working in unstable network

© 1997-2013 Devart. All Rights Reserved.

14.10 Data Type Mapping

Overview

Data Type Mapping is a flexible and easily customizable gear, which allows
mapping between DB types and Delphi field types.
In this article there are several examples, which can be used when working with all
supported DBs. In order to clearly display the universality of the Data Type Mapping
gear, a separate DB will be used for each example.

Data Type Mapping Rules

In versions where Data Type Mapping was not supported, UniDAC automatically set
correspondence between the DB data types and Delphi field types. In versions with
Data Type Mapping support the correspondence between the DB data types and
Delphi field types can be set manually.
Here is the example with the numeric type in the following table of a PostgreSQL
database:

CREATE TABLE numeric_types
(
 id integer NOT NULL,
 value1 numeric(5,2),
 value2 numeric(10,4),
 value3 numeric(15,6),
 CONSTRAINT pk_numeric_types PRIMARY KEY (id)
)

And Data Type Mapping should be used so that:
 the numeric fields with Scale=0 in Delphi would be mapped to one of the field

types: TSmallintField, TIntegerField or TlargeintField, depending on Precision
 to save precision, the numeric fields with Precision>=10 and Scalе<= 4 would be

mapped to TBCDField

Using UniDAC 71

© 2013 Enter your company name

 and the numeric fields with Scalе>= 5 would be mapped to TFMTBCDField.
The above in the form of a table:

PostgreSQl data type Default Delphi field type
Destination Delphi field
type

numeric(4,0) ftFloat ftSmallint

numeric(10,0) ftFloat ftInteger

numeric(15,0) ftFloat ftLargeint

numeric(5,2) ftFloat ftFloat

numeric(10,4) ftFloat ftBCD

numeric(15,6) ftFloat ftFMTBCD

To specify that numeric fields with Precision <= 4 and Scale = 0 must be mapped to
ftSmallint, such a rule should be set:

var
 DBType: Word;
 MinPrecision: Integer;
 MaxPrecision: Integer;
 MinScale: Integer;
 MaxScale: Integer;
 FieldType: TfieldType;
begin
 DBType := pgNumeric;
 MinPrecision := 0;
 MaxPrecision := 4;
 MinScale := 0;
 MaxScale := 0;
 FieldType := ftSmallint;
 PgConnection.DataTypeMap.AddDBTypeRule(DBType, MinPrecision, MaxPrecision, MinScale, MaxScale, FieldType);
end;

This is an example of the detailed rule setting, and it is made for maximum
visualization.Usually, rules are set much shorter, e.g. as follows:

// clear existing rules
PgConnection.DataTypeMap.Clear;
// rule for numeric(4,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, 4, 0, 0, ftSmallint);
// rule for numeric(10,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 5, 10, 0, 0, ftInteger);
// rule for numeric(15,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 11, rlAny, 0, 0, ftLargeint);
// rule for numeric(5,2)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, 9, 1, rlAny, ftFloat);
// rule for numeric(10,4)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 10, rlAny, 1, 4, ftBCD);
// rule for numeric(15,6)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 10, rlAny, 5, rlAny, ftFMTBcd);

Rules order

When setting rules, there can occur a situation when two or more rules that
contradict to each other are set for one type in the database. In this case, only one
rule will be applied — the one, which was set first.

For example, there is a table in an Oracle database:

CREATE TABLE NUMBER_TYPES
(

Universal Data Access Components72

© 2013 Enter your company name

 ID NUMBER NOT NULL,
 VALUE1 NUMBER(5,2),
 VALUE2 NUMBER(10,4),
 VALUE3 NUMBER(15,6),
 CONSTRAINT PK_NUMBER_TYPES PRIMARY KEY (id)
)

TBCDField should be used for NUMBER(10,4), and TFMTBCDField - for NUMBER
(15,6) instead of default fields:

Oracle data type Default Delphi field type Destination field type

NUMBER(5,2) ftFloat ftFloat

NUMBER(10,4) ftFloat ftBCD

NUMBER(15,6) ftFloat ftFMTBCD

If rules are set in the following way:

OraSession.DataTypeMap.Clear;
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, 9, rlAny, rlAny, ftFloat);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, 4, ftBCD);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, rlAny, ftFMTBCD);

it will lead to the following result:

Oracle data type Delphi field type

NUMBER(5,2) ftFloat

NUMBER(10,4) ftBCD

NUMBER(15,6) ftFMTBCD

But if rules are set in the following way:

OraSession.DataTypeMap.Clear;
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, rlAny, ftFMTBCD);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, 4, ftBCD);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, 9, rlAny, rlAny, ftFloat);

it will lead to the following result:

Oracle data type Delphi field type

NUMBER(5,2) ftFMTBCD

NUMBER(10,4) ftFMTBCD

NUMBER(15,6) ftFMTBCD

This happens because the rule

OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, rlAny, ftFMTBCD);

will be applied for the NUMBER fields, whose Precision is from 0 to infinity, and
Scale is from 0 to infinity too. This condition is met by all NUMBER fields with any
Precision and Scale.

When using Data Type Mapping, first matching rule is searched for each type, and it
is used for mapping. In the second example, the first set rule appears to be the first
matching rule for all three types, and therefore the ftFMTBCD type will be used for
all fields in Delphi.

If to go back to the first example, the first matching rule for the NUMBER(5,2) type
is the first rule, for NUMBER(10,4) - the second rule, and for NUMBER(15,6) - the
third rule. So in the first example, the expected result was obtained.

Using UniDAC 73

© 2013 Enter your company name

So it should be remembered that if rules for Data Type Mapping are set so that two
or more rules that contradict to each other are set for one type in the database, the
rules will be applied in the specifed order.

Defining rules for Connection and Dataset

Data Type Mapping allows setting rules for the whole connection as well as for each
DataSet in the application.

For example, such table is created in SQL Server:

CREATE TABLE person
(
 id INT NOT NULL ,
 firstname VARCHAR(20) NULL ,
 lastname VARCHAR(30) NULL ,
 gender_code VARCHAR(1) NULL ,
 birth_dttm DATETIME NULL ,
 CONSTRAINT pk_person PRIMARY KEY CLUSTERED (id ASC) ON [PRIMARY]
)
GO

It is exactly known that the birth_dttm field contains birth day, and this field should
be ftDate in Delphi, and not ftDateTime. If such rule is set:

MSConnection.DataTypeMap.Clear;
MSConnection.DataTypeMap.AddDBTypeRule(msDateTime, ftDate);

all DATETIME fields in Delphi will have the ftDate type, that is incorrect. The ftDate
type was expected to be used for the DATETIME type only when working with the
person table. In this case, Data Type Mapping should be set not for the whole
connection, but for a particular DataSet:

MSQuery.DataTypeMap.Clear;
MSQuery.DataTypeMap.AddDBTypeRule(msDateTime, ftDate);

Or the opposite case. For example, DATETIME is used in the application only for
date storage, and only one table stores both date and time. In this case, the
following rules setting will be correct:

MSConnection.DataTypeMap.Clear;
MSConnection.DataTypeMap.AddDBTypeRule(msDateTime, ftDate);
MSQuery.DataTypeMap.Clear;
MSQuery.DataTypeMap.AddDBTypeRule(msDateTime, ftDateTime);

In this case, in all DataSets for the DATETIME type fields with the ftDate type will
be created, and for MSQuery - with the ftDateTime type.

The point is that the priority of the rules set for the DataSet is higher than the
priority of the rules set for the whole connection. This allows both flexible and
convenient setting of Data Type Mapping for the whole application. There is no need
to set the same rules for each DataSet, all the general rules can be set once for the
whole connection. And if a DataSet with an individual Data Type Mapping is
necessary, individual rules can be set for it.

Rules for a particular field

Sometimes there is a need to set a rule not for the whole connection, and not for
the whole dataset, but only for a particular field.

e.g. there is such table in a MySQL database:

Universal Data Access Components74

© 2013 Enter your company name

CREATE TABLE item
(
 id INT NOT NULL AUTO_INCREMENT,
 name CHAR(50) NOT NULL,
 guid CHAR(38),
 PRIMARY KEY (id)
) ENGINE=MyISAM;

The guid field contains a unique identifier. For convenient work, this identifier is
expected to be mapped to the TGuidField type in Delphi. But there is one problem,
if to set the rule like this:

MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myChar, ftGuid);

then both name and guid fields will have the ftGuid type in Delphi, that does not
correspond to what was planned. In this case, the only way is to use Data Type
Mapping for a particular field:

MyQuery.DataTypeMap.AddFieldNameRule('guid', ftGuid);

In addition, it is important to remember that setting rules for particular fields has
the highest priority. If to set some rule for a particular field, all other rules in the
Connection or DataSet will be ignored for this field.

Ignoring conversion errors

Data Type Mapping allows mapping various types, and sometimes there can occur
the problem with that the data stored in a DB cannot be converted to the correct
data of the Delphi field type specified in rules of Data Type Mapping or vice-versa.
In this case, an error will occur, which will inform that the data cannot be mapped
to the specified type.

For example:

Database value Destination field type Error

'text value' ftInteger
String cannot be converted

to Integer

1000000 ftSmallint Value is out of range

15,1 ftInteger
Cannot convert float to

integer

But when setting rules for Data Type Mapping, there is a possibility to ignore data
conversion errors:

IBCConnection.DataTypeMap.AddDBTypeRule(ibcVarchar, ftInteger, True);

In this case, the correct conversion is impossible. But because of ignoring data
conversion errors, Data Type Mapping tries to return values that can be set to the
Delphi fields or DB fields depending on the direction of conversion.

Database value
Destination field
type

Result Result description

'text value' ftInteger 0

0 will be returned if
the text cannot be

converted to
number

Using UniDAC 75

© 2013 Enter your company name

1000000 ftSmallint 32767

32767 is the max
value that can be
assigned to the

Smallint data type

15,1 ftInteger 15
15,1 was truncated
to an integer value

Therefore ignoring of conversion errors should be used only if the conversion results
are expected.

UniDAC and Data Type Mapping

When using UniDAC, there often occurs a hard-to-solve situation, when two similar
types from the DB have differnt types in Delphi. For greater clarity, there are
examples below.

e.g. there is a project, which works with two DBs: Oracle and SQL Server. There is
such table created in each DB:

Oracle:

CREATE TABLE ITEM_INFO
(
 ID NUMBER NOT NULL,
 CODE VARCHAR2(10) NOT NULL,
 DESCRIPTION NVARCHAR2(250),
 CONSTRAINT PK_ITEM_INFO PRIMARY KEY (id)
)

SQL Server:

CREATE TABLE item_info
(
 id INT NOT NULL ,
 code VARCHAR(10) NOT NULL ,
 description NVARCHAR(250) NULL ,
 CONSTRAINT pk_item_info PRIMARY KEY CLUSTERED (id ASC)
 ON [PRIMARY]
)
GO

The problem is due to that, when working with Oracle with the enabled UseUnicode
option, both CODE and DESCRIPTION fields will have the ftWideString type, and if
the UseUnicode option is disabled, both fields will have the ftString type. For SQL
Server, the CODE field will always be ftString, and the DESCRIPTION field will
always be ftWideString. This problem arises especially sharply when attempting to
create persistent fields, because in this case, when working with one of the
providers, an error will always occur. Formerly, the only way to avoid the error was
to refuse using of persistent fields in such situations.

For the time being, this problem can be solved rather easily. Data Type Mapping
can be set for the Oracle provider:

UniConnection.DataTypeMap.Clear;
UniConnection.DataTypeMap.AddDBTypeRule(oraVarchar2, ftString);
UniConnection.DataTypeMap.AddDBTypeRule(oraNVarchar2, ftWideString);

Or Data Type Mapping can be set for SQL Server:

Universal Data Access Components76

© 2013 Enter your company name

// for useUnicode = True in the Oracle data provider
UniConnection.DataTypeMap.Clear;
UniConnection.DataTypeMap.AddDBTypeRule(msVarchar, ftWideString);

or:

// for useUnicode = False in the Oracle data provider
UniConnection.DataTypeMap.Clear;
UniConnection.DataTypeMap.AddDBTypeRule(msNVarchar, ftString);

© 1997-2013 Devart. All Rights Reserved.

14.11 Data Encryption

UniDAC has built-in algorithms for data encryption and decryption. To enable
encryption, you should attach the TCREncryptor component to the dataset, and
specify the encrypted fields. When inserting or updating data in the table,
information will be encrypted on the client side in accordance with the specified
method. Also when reading data from the server, the components decrypt the data
in these fields "on the fly".
For encryption, you should specify the data encryption algorithm (the
EncryptionAlgorithm property) and password (the Password property). On the basis
of the specified password, the key is generated, which encrypts the data. There is
also a possibility to set the key directly using the SetKey method.
When storing the encrypted data, in addition to the initial data, you can also store
additional information: the GUID and the hash. (The method is specified in the
TCREncryptor.DataHeader property).
If data is stored without additional information, it is impossible to determine
whether the data is encrypted or not. In this case, only the encrypted data should
be stored in the column, otherwise, there will be confusion because of the inability
to distinguish the nature of the data. Also in this way, the similar source data will
be equivalent in the encrypted form, that is not good from the point of view of the
information protection. The advantage of this method is the size of the initial data
equal to the size of the encrypted data.
To avoid these problems, it is recommended to store, along with the data, the
appropriate GUID, which is necessary for specifying that the value in the record is
encrypted and it must be decrypted when reading data. This allows you to avoid
confusion and keep in the same column both the encrypted and decrypted data,
which is particularly important when using an existing table. Also, when doing in
this way, a random initializing vector is generated before the data encryption, which
is used for encryption. This allows you to receive different results for the same
initial data, which significantly increases security.
The most preferable way is to store the hash data along with the GUID and
encrypted information to determine the validity of the data and verify its integrity.
In this way, if there was an attempt to falsify the data at any stage of the
transmission or data storage, when decrypting the data, there will be a
corresponding error generated. For calculating the hash the SHA1 or MD5
algorithms can be used (the HashAlgorithm property).
The disadvantage of the latter two methods - additional memory is required for
storage of the auxiliary information.
As the encryption algorithms work with a certain size of the buffer, and when
storing the additional information it is necessary to use additional memory,
TCREncryptor supports encryption of string or binary fields only (ftString,
ftWideString, ftBytes, ftVarBytes, ftBlob, ftMemo, ftWideMemo). If encryption of

Using UniDAC 77

© 2013 Enter your company name

string fields is used, firstly, the data is encrypted, and then the obtained binary data
is converted into hexadecimal format. In this case, data storage requires two times
more space (one byte = 2 characters in hexadecimal).
Therefore, to have the possibility to encrypt other data types (such as date,
number, etc.), it is necessary to create a field of the binary or BLOB type in the
table, and then convert it into the desired type on the client side with the help of
data mapping.
It should be noted that the search and sorting by encrypted fields become
impossible on the server side. Data search for these fields can be performed only on
the client after decryption of data using the Locate and LocateEx methods. Sorting
is performed by setting the TMemDataSet.IndexFieldNames property.

Example.
Let's say there is an employee list of an enterprise stored in the table with the
following data: full name, date of employment, salary, and photo. We want all these
data to be stored in the encrypted form. Write a script for creating the table:

CREATE TABLE EMP (
EMPNO varbinary IDENTITY (1,1) NOT NULL PRIMARY KEY,
ENAME varbinary (2000),
HIREDATE varbinary (200),
SAL varbinary (200),
FOTO VARBINARY);

As we can see, the fields for storage of the textual information, date, and floating-
point number are created with the VARBINARY type. This is for the ability to store
encrypted information, and in the case of the text field - to improve performance.
Write the code to process this information on the client.

UniQuery.SQL.Text : = 'SELECT * FROM EMP';
UniQuery.Encryption.Encryptor : = UniEncryptor;
UniQuery.Encryption.Fields : = 'ENAME, HIREDATE, SAL, FOTO';
UniEncryptor.Password : = '11111';
UniQuery.DataTypeMap.AddFieldNameRule ('ENAME', ftString);
UniQuery.DataTypeMap.AddFieldNameRule ('HIREDATE', ftDateTime);
UniQuery.DataTypeMap.AddFieldNameRule ('SAL', ftFloat);
UniQuery.Open;

© 1997-2013 Devart. All Rights Reserved.

14.12 Increasing Performance

This topic considers basic stages of working with DataSet and ways to increase
performance on each of these stages.

Connect

If your application performs Connect/Disconnect operations frequently, additional
performance can be gained using pooling mode (TCustomDAConnection.Pooling =
True). It reduces connection reopening time greatly (hundreds times). Such
situation usually occurs in web applications.

Execute

If your application executes the same query several times, you can use the
TCustomDADataSet.Prepare method or set the TDADataSetOptions.AutoPrepare
property to increase performance. For example, it can be enabled for Detail dataset

Universal Data Access Components78

© 2013 Enter your company name

in Master/Detail relationship or for update objects in TDAUpdateSQL. The
performance gain achieved this way can be anywhere from several percent to
several times, depending on the situation.
To execute SQL statements a TUniSQL component is more preferable than
TUniQuery. It can give several additional percents performance gain.
If the TCustomDADataSet.Options.StrictUpdate option is set to False, the
RowsAffected property is not calculated and becomes equal zero. This can improve
performance of query executing, so if you need to execute many data updating
statements at once and you don't mind affected rows count, set this option to
False.

Fetch

In some situations you can increase performance a bit by using TCustomDADataSet.
Options.CompressBlobMode.
You can also tweak your application performance by using the following properties
of TCustomDADataSet descendants:
 FetchRows
 Options.FlatBuffers
 Options.LongStrings
 UniDirectional

See the descriptions of these properties for more details and recommendations.

Navigate

The Locate function works faster when dataset is locally sorted on KeyFields fields.
Local dataset sorting can be set with the IndexFieldNames property. Performance
gain can be large if the dataset contains a large number of rows.
Lookup fields work faster when lookup dataset is locally sorted on lookup Keys.
Setting the TDADataSetOptions.CacheCalcFields property can improve performance
when locally sorting and locating on calculated and lookup fields. It can be also
useful when calculated field expressions contain complicated calculations.
Setting the TDADataSetOptions.LocalMasterDetail option can improve performance
greatly by avoiding server requests on detail refreshes. Setting the
TDADataSetOptions.DetailDelay option can be useful for avoiding detail refreshes
when switching master DataSet records frequently.

Update

If your application updates datasets in the CachedUpdates mode, then setting the
TCustomDADataSet.Options.UpdateBatchSize option to more than 1 can improve
performance several hundred times more by reducing the number of requests to the
server.
You can also increase the data sending performance a bit (several percents) by
using Dataset.UpdateObject.ModifyObject, Dataset.UpdateObject, etc. Little
additional performance improvement can be reached by setting the AutoPrepare
property for these objects.

© 1997-2013 Devart. All Rights Reserved.

Using UniDAC 79

© 2013 Enter your company name

14.13 Macros

Macros help you to change SQL statements dynamically. They allow partial
replacement of the query statement by user-defined text. Macros are identified by
their names which are then referred from SQL statement to replace their
occurrences for associated values.
First step is to assign macros with their names and values to a dataset object.
Then modify SQL statement to include macro names into desired insertion points.
Prefix each name with & ("at") sign to let UniDAC discriminate them at parse time.
Resolved SQL statement will hold macro values instead of their names but at the
right places of their occurrences. For example, having the following statement with
the TableName macro name:

SELECT * FROM &TableName

You may later assign any actual table name to the macro value property leaving
your SQL statement intact.

Query1.SQL.Text := 'SELECT * FROM &TableName';
Query1.MacroByName('TableName').Value := 'Dept';
Query1.Open;

UniDAC replaces all macro names with their values and sends SQL statement to the
server when SQL execution is requested.
Note that there is a difference between using TMacro AsString and Value properties.
If you set macro with the AsString property, it will be quoted. For example, the
following statements will result in the same result Query1.SQL property value.

Query1.MacroByName('StringMacro').Value := '''A string''';
Query1.MacroByName('StringMacro').AsString := 'A string';

Macros can be especially useful in scripts that perform similar operations on
different objects. You can use macros that will be replaced with an object name. It
allows you to have the same script text and to change only macro values.
You may also consider using macros to construct adaptable conditions in WHERE
clauses of your statements.

See Also

 Unified SQL
 TMacro
 TCustomDADataSet.MacroByName
 TCustomDADataSet.Macros

© 1997-2013 Devart. All Rights Reserved.

14.14 Unified SQL

One of the most crucial problems in programming applications for several databases
is that SQL syntax can be different in many situations. This article demonstrates
how UniDAC helps to overcome this issue.
Database applications operate data using SQL statements. Unless entered directly
by the user, the statements can be constructed in one of two ways, either hard-
coded during development, or constructed at run time. The first way is very
convenient for developer, while the second way is far more flexible. UniDAC allows

Universal Data Access Components80

© 2013 Enter your company name

to take best from both approaches: you can hard-code SQL statements that are
transformed into appropriate syntax in run time.
 General Information
 Macros
 Conditional Execution (IF)
 Literals and Identifiers
 Comments
 SQL Functions
 Macros Reference

General Information

Universal capabilities of UniDAC are based on the following features:
 Macros that have values specific for different databases (providers). In addition to

predefined macros you can define your own.
 Set of automatically mapped functions.
 Unified standard of literals.

Knowing this, you can write truly database-independent SQL code interpreted in run
time.

Macros

UniDAC offers two approaches to working with macros: Connection Macros and
DataSet Macros. They differ by the way they are defined and by the way they are
indicated in the SQL query text.
DataSet Macros are difined by "&MacroName" and affect only the specified dataset.
Connection Macros are defined by "{MacroName}" and affect all associated
datasets.
Lets make more detailed analysis of TUniConnection.Macros. You can work with it in
the traditional way:

if UniConnection.ProviderName = 'Oracle' then
 UniConnection.MacroByName('tablename').Value := 'dept'
else
if UniConnection.ProviderName = 'MySql' then
 UniConnection.MacroByName('tablename').Value := 'test.dept';

Or you can use predefined approach.
Macro is a set of name, condition and value. Macro evaluates to its value if
underlying condition is enabled, or to an empty string if the condition is not
enabled. Conditions are enabled or disabled depending on a provider used by the
TUniConnection component. For example, if you use the Oracle provider, ORACLE
macro will be enabled.
Consequently, all macros that base on Oracle conditions return their value when
used in SQL statements; all other macros return empty string.
For list of available conditions (in other words, predefined macros) refer to the
Macros Reference.
From API point of view, macros are represented as TUniMacro class. Collections of
macros are organized into TUniMacros, which can be accessed through the Macros
property of TUniConnection. Each connection has individual set of macros.
The following examples demonstrate usage of macros:

UniConnection.Provider = 'MySQL';
...
UniConnection.Open;
UniConnection.Macros.Add('tablename', 'test.dept', 'MySQL');
UniQuery.SQL.Text := 'SELECT Count(*) FROM {tablename}';

Using UniDAC 81

© 2013 Enter your company name

UniQuery.Open;

Now suppose we need to do the same on an Oracle server. Due to usage of UniSQL
the only thing to add is another macro:

UniConnection.Provider = 'Oracle';
...
UniConnection.Open;
UniConnection.Macros.Add('tablename', 'test.dept', 'MySQL');
UniConnection.Macros.Add('tablename', 'dept', 'Oracle');
UniQuery.SQL.Text := 'SELECT Count(*) FROM {tablename}';
UniQuery.Open;

As you see, it is very easy to control SQL statements transformation. Now let's take
a look at another example that demonstrates a whole pack of important features:

UniConnection.Macros.Add('tablename', 'emp', '');
//For MySQL, prepend database name
UniConnection.Macros.Add('tablename', 'test.emp', 'MySQL');
//Limit records count where it is easy (MySQL and PostgreSQL)
UniConnection.Macros.Add('limit', 'LIMIT 0,5', 'MySQL');
UniConnection.Macros.Add('limit', 'LIMIT 5 OFFSET 0', 'PostgreSQL');
//Define default FROM clause
UniConnection.Macros.Add('from', 'FROM {tablename}', '');
//If the limit macro is defined, add extra clause
UniConnection.Macros.Add('from', 'FROM {tablename} {limit}', 'limit');
//Define query that uses the macro
UniQuery.SQL.Text := 'SELECT EName, Job, Sal {from}';
UniQuery.Open;

Supposed that in this sample connection is made to MySQL server, the executed
statement would be

 SELECT EName, Job, Sal FROM emp LIMIT 0,5

Note: you can use DBMonitor application to see what your query turns into on
execution.
A step-by step analysis of the sample reveals following important notes:

1. If a macro has blank condition, it is always evaluated.
2.Macro with enabled condition overrides macro with blank condition.
3.Conditions are case-insensitive.
4.You can use your own macros as conditions.
5.You can use macros as part of the value of other macros.

You can add any text after macros name inside braces. This text is added to final
SQL statement if macro's condition is enabled. For example:

UniConnection.Macros.Add('schema', 'test', 'MySQL');
UniQuery.SQL.Text := 'SELECT * FROM {schema .}emp';
UniQuery.Open;

In this example a dot is added only when SCHEMA macro is enabled.
UniDAC has set of useful predefined macros that help you write universal
statements. Please refer to Macros Reference for more information.

Conditional Execution (IF)

For the purpose of extra flexibility UniSQL supports conditional inclusion of SQL
code into resulting statements. This is as simple as that:

{if my_macro} STATEMENT_1 {else} STATEMENT_2 {endif}

If macro my_macro is defined, the STATEMENT_1 is returned, otherwise

Universal Data Access Components82

© 2013 Enter your company name

STATEMENT_2 is the result of the expression. For instance:
{if Oracle}
SELECT * FROM dept
{else}
SELECT * FROM test.dept
{endif}

The {else} clause can be omitted. Here is a bit more sophisticated example:
SELECT {if Oracle}RowId, {endif} DeptNo, DName FROM dept

Note that you can use nested {if...} constructs to continue branching. Also you can
use predefined macros.

Literals and Identifiers

UniDAC provides universal syntax for dates, timestamps and quoted identifiers. Its
usage is similar to usage of macros. Note that this functionality is not available for
OLE DB, ODBC, and DB2 data providers.
Date and time constants
In date/time constants parts of date are separated with hyphen, time parts are
separated with colon, and space is expected between the two parts. The following
table illustrates date/time format:

Literal type Format Example

date yyyy-mm-dd {date '2006-12-31'}

time hh:mm:ss {time '23:59:59'}

timestamp yyyy-mm-dd hh:mm:ss {timestamp '2006-12-31
23:59:59'}

The following SQL statement:

 SELECT * FROM emp WHERE HIREDATE>{date '1982-01-15'}

in MySQL evaluates to

 SELECT * FROM emp WHERE HIREDATE>CAST('1982-01-15' AS DATETIME)

and in Oracle it turns to

 SELECT * FROM emp WHERE HIREDATE>TO_DATE('1982-01-15', 'YYYY-MM-DD')

Universal quoting of identifiers
All database servers support quoting for identifiers that contain special symbols like
spaces or dots. UniDAC allows to wrap identifiers universally so that quotation is
appropriate for every database server. Use the following syntax:

"identifier"

For example, expression "table1"."field1" turns into "table1"."field1" in Oracle and
PostgreSQL, into [table1].[field1] in MS SQL Server, and into `table1`.`field1` in
MySQL server. Do not confuse with single quotes, which are intended to wrap string
constants.

Comments

Comments are inserted in UniSQL with two hyphens (comments out the text till the
end of current line). For multiline comment, wrap it into /*...*/ sequences.
Example:

--This is a single-line comment

Using UniDAC 83

© 2013 Enter your company name

/*This one
 spans over
 several lines*/

SQL Functions

UniDAC introduces standard for calling common SQL functions.

This is set of function names with fixed meaning.

In run time the function is transformed either to corresponding native function, or
to equivalent expression (for example, several functions). The construct syntax is

{fn Function_Name(parameter1 [,parameter2 ...])}

For example, the following fragment

SELECT {fn TRIM(EName)} FROM emp

evaluates to

SELECT TRIM(EName) FROM emp

in MySQL, because there is the counterpart in the DBMS. But in MS SQL Server
there is no single corresponding function, so the expression evaluates to

SELECT LTRIM(RTRIM(EName)) FROM emp

The following table lists unified functions and describes them briefly.

Function name Description

System routines

USER Returns current user name.

String routines

CHAR_LENGTH(string_exp) Returns length of string expression in
characters.

LOCATE(string_exp1, string_exp2) Finds first occurrence of substring
string_exp1 in string expression
string_exp2.

SUBSTRING(string_exp, start, length) Returns substring from specified string
string_exp.

CONCAT(string_exp1, string_exp2) Concatenates several string
expressions.

CHAR(code) Converts integer values into
characters.

TRIM(string_exp) Removes leading and trailing spaces
from a string.

Number routines

TRUNCATE(numeric_exp, integer_exp) Returns numeric_exp truncated to
integer_exp places right of the decimal
point.

CEILING(numeric_exp) Returns the smallest integer value not
less than numeric_exp.

Date and time routines

Universal Data Access Components84

© 2013 Enter your company name

CURRENT_DATE Returns date part of current
timestamp, that is, year, month and
day.

YEAR(date_exp) Extracts year part of a timestamp.

MONTH(date_exp) Extracts month part of a timestamp.

DAY(date_exp) Extracts day part of a timestamp.

DATEADD(datepart, number, date) Returns a new datetime value based on
adding an interval to the specified date
. The interval is formed as number of
datepart units. The following example
adds two years to HireDate field:
SELECT {fn DATEADD(year,2,
HireDate)} FROM emp

DATEDIFF (datepart, startdate,
enddate)

Returns the number of date and time
boundaries crossed between two
specified dates.

Conversion routines

TODATE(string_exp) Converts value to date format.

TOCHAR(any_type_exp) Converts value to string format.

TONUMBER(string_exp) Converts value to number format.

Macros Reference

The following table enumerates names of predefined macros that are enabled
depending on DBMS server connected and provider used.

Provider Macro name

Adaptive Server Enterprise ASE

Advantage Database Server Advantage

DB2 DB2

InterBase InterBase

Microsoft Access Access

MySQL MySQL

ODBC ODBC

Oracle Oracle

PostgreSQL PostgreSQL

SQLite SQLite

SQL Server SQLServer

DBF DBF

NexusDB NexusDB

There are also predefined macros that help to solve most common differences in
SQL syntax.

The following table enumerates them and gives translation for some databases.

Using UniDAC 85

© 2013 Enter your company name

Macro name VARCHAR DOUBLE DATETIME PROVIDER

Remarks

Evaluates to
database type
that represents
string values.
Used mainly in
CAST
expressions.

Evaluates to
database type
that represents
floating point
values. Used
mainly in CAST
expressions.

Evaluates to
database type
that represents
date and time
values. Used
mainly in CAST
expressions.

Evaluates to
the name of
currently used
provider

Adaptive
Server
Enterprise

VARCHAR FLOAT DATETIME ASE

Advantage VARCHAR DOUBLE TIMESTAMP Advantage

DB2 VARCHAR DOUBLE TIMESTAMP DB2

InterBase
VARCHAR DOUBLE

PRECISION
TIMESTAMP InterBase

Microsoft
Access

VARCHAR DOUBLE DATE Access

MySQL VARCHAR DOUBLE DATETIME MySQL

ODBC VARCHAR DOUBLE TIMESTAMP ODBC

Oracle VARCHAR2 NUMBER DATE Oracle

PostgreSQL
VARCHAR DOUBLE

PRECISION
TIMESTAMP PostgreSQL

SQLite
VARCHAR DOUBLE

PRECISION
TIMESTAMP SQLite

SQL Server VARCHAR FLOAT(53) DATETIME SQL Server

DBF VARCHAR DOUBLE DATE DBF

NEXUS VARCHAR DOUBLE DATETIME NexusDB

Working with Macros

©

 1997-2013 Devart. All Rights Reserved.

14.15 Using Several DAC Products in One IDE

UniDAC, ODAC, SDAC, MyDAC, IBDAC, PgDAC, and LiteDAC components use
common base packages (for Win32) and assemblies (for .NET) listed below:
Packages:
 dacXX.bpl
 dacvclXX.bpl
 dcldacXX.bpl

Assemblies:
 Devart.Dac.dll
 Devart.Vcl.dll
 Devart.Dac.Design.dll

Universal Data Access Components86

© 2013 Enter your company name

 Devart.Dac.AdoNet.dll

Note that product compatibility is provided for the current build only. In other
words, if you upgrade one of the installed products, it may conflict with older builds
of other products. In order to continue using the products simultaneously, you
should upgrade all of them at the same time.

© 1997-2013 Devart. All Rights Reserved.

14.16 DataSet Manager

DataSet Manager window

The DataSet Manager window displays the datasets in your project. You can use the
DataSet Manager window to create a user interface (consisting of data-bound
controls) by dragging items from the window onto forms in your project. Each item
has a drop-down control list where you can select the type of control to create prior
to dragging it onto a form. You can customize the control list with additional
controls, including the controls you have created.

Using the DataSet Manager window, you can:
 Create forms that display data by dragging items from the DataSet Manager

window onto forms.

 Customize the list of controls available for each data type in the DataSet

Manager window.

 Choose which control should be created when dragging an item onto a form in

your Windows application.

Using UniDAC 87

© 2013 Enter your company name

 Create and delete TField objects in the DataSets of your project.

Opening the DataSet Manager window

You can display the DataSet Manager window by clicking DataSet Manager on the
Tools menu. You can also use IDE desktop saving/loading to save DataSet Manager
window position and restore it during the next IDE loads.

Observing project DataSets in the DataSet Manager
Window

By default DataSet Manager shows DataSets of currently open forms. It can also
extract DataSets from all forms in the project. To use this, click Extract DataSets
from all forms in project button. This settings is remembered. Note, that using this
mode can slow down opening of the large projects with plenty of forms and
DataSets. Opening of such projects can be very slow in Borland Delphi 2005 and
Borland Developer Studio 2006 and can take up to several tens of minutes.
DataSets can be grouped by form or connection. To change DataSet grouping click
the Grouping mode button or click a down. You can also change grouping mode by
selecting required mode from the DataSet Manager window popup menu.

Creating Data-bound Controls

You can drag an item from the DataSet Manager window onto a form to create a
new data-bound control. Each node in the DataSet Manager window allows you to
choose the type of control that will be created when you drag it onto a form. You
must choose between a Grid layout, where all columns or properties are displayed
in a TDataGrid component, or a Details layout, where all columns or properties are
displayed in individual controls.
To use grid layout drag the dataset node on the form. By default TDataSource and
TDBGrid components are created. You can choose the control to be created prior to
dragging by selecting an item in the DataSet Manager window and choosing the
control from the item's drop-down control list.

Universal Data Access Components88

© 2013 Enter your company name

To use Details layout choose Details from the DataSet node drop-down control list
in the DataSet Manager window. Then select required controls in the drop-down
control list for each DataSet field. DataSet fields must be created. After setting
required options you can drag the DataSet to the form from the DataSet wizard.
DataSet Manager will create TDataSource component, and a component and a label
for each field.

Adding custom controls to the DataSet Manager window

To add custom control to the list click the Options button on the DataSet Manager
toolbar. A DataSet Manager - Customize controls dialog will appear. Using this
dialog you can set controls for the DataSets and for the DataSet fields of different

Using UniDAC 89

© 2013 Enter your company name

types. To do it, click DataSets node or the node of field of required type in DB
objects groups box and use Add and Remove buttons to set required control list.
You can also set default control by selecting it in the list of assigned DB controls and
pressing Default button.

The default configuration can easily be restored by pressing Reset button in the
DataSet Manager - Options dialog.

Working with TField objects

DataSet Manager allows you to create and remove TField objects. DataSet must be
active to work with its fields in the DataSet Manager. You can add fields, based on
the database table columns, create new fields, remove fields, use drag-n-drop to
change fields order.
To create a field based on the database table column right-click the Fields node and
select Create Field from the popup menu or press <Insert>. Note that after you add
at least one field manually, DataSet fields corresponding to data fields will not be
generated automatically when you drag the DataSet on the form, and you can not
drag such fields on the form. To add all available fields right-click the Fields node
and select Add all fields from the popup menu.
To create new field right-click the Fields node and select New Field from the popup
menu or press <Ctrl+Insert>. The New Field dialog box will appear. Enter required
values and press OK button.
To delete fields select these fields in the DataSet Manager window and press
<Delete>.
DataSet Manager allows you to change view of the fields displayed in the main
window. Open the Customize controls dialog, and jump to the Options page.

Universal Data Access Components90

© 2013 Enter your company name

You can chose what information will be added to names of the Field and Data Field
objects in the main window of DataSet Manager. Below you can see the example.

© 1997-2013 Devart. All Rights Reserved.

14.17 DBMonitor

To extend monitoring capabilities of UniDAC applications there is an additional tool
called DBMonitor. It is provided as an alternative to Borland SQL Monitor which is
also supported by UniDAC.
DBMonitor is an easy-to-use tool to provide visual monitoring of your database
applications.
DBMonitor has the following features:
 multiple client processes tracing;
 SQL event filtering (by sender objects);
 SQL parameter and error tracing.

DBMonitor is intended to hamper an application being monitored as little as
possible.
To trace your application with DB Monitor you should follow these steps:
 drop TUniSQLMonitor component onto the form;
 turn moDBMonitor option on;
 set to True the Debug property for components you want to trace;
 start DBMonitor before running your program.

© 1997-2013 Devart. All Rights Reserved.

Using UniDAC 91

© 2013 Enter your company name

14.18 Writing GUI Applications with UniDAC

UniDAC GUI part is standalone. This means that to make GUI elements such as SQL
cursors, connect form, connect dialog etc. available, you should explicitly include
unit in your application. This feature is needed for writing console applications.

Delphi and C++Builder

By default UniDAC does not require Forms, Controls and other GUI related units.
Only TUniConnectDialog components require the Forms unit.

© 1997-2013 Devart. All Rights Reserved.

14.19 Compatibility with Previous Versions

We always try to keep UniDAC compatible with previous versions, but sometimes
we have to change the behaviour of UniDAC in order to enhance its functionality, or
avoid bugs. This topic describes such changes, and how to revert the old UniDAC
behaviour. We strongly recommend not to turn on the old behaviour of UniDAC. Use
options described below only if changes applied to UniDAC crashed your existent
application.
Values of the options described below should be assigned in the initialization
section of one of the units in your project.

DBAccess.BaseSQLOldBehavior:

The BaseSQL property is similar to the SQL property, but it does not store changes
made by AddWhere, DeleteWhere, and SetOrderBy methods. After assigning an SQL
text and modifying it by one of these methods, all subsequent changes of the SQL
property will not be reflected in the BaseSQL property. This behavior was changed
in UniDAC . To restore old behavior, set the BaseSQLOldBehavior variable to True.

DBAccess.SQLGeneratorCompatibility:

If the manually assigned RefreshSQL property contains only "WHERE" clause,
UniDAC uses the value of the BaseSQL property to complete the refresh SQL
statement. In this situation all modifications applied to the SELECT query by
functions AddWhere, DeleteWhere are not taken into account. This behavior was
changed in UniDAC . To restore the old behavior, set the BaseSQLOldBehavior
variable to True.

MemDS.SendDataSetChangeEventAfterOpen:

Starting with UniDAC , the DataSetChange event is sent after the dataset gets
open. It was necessary to fix a problem with disappeared vertical scrollbar in some
types of DB-aware grids. This problem appears only under Windows XP when visual
styles are enabled.
To disable sending this event, change the value of this variable to False.

MemDS.DoNotRaiseExcetionOnUaFail:

Starting with UniDAC , if the OnUpdateRecord event handler sets the UpdateAction
parameter to uaFail, an exception is raised. The default value of UpdateAction is
uaFail. So, the exception will be raised when the value of this parameter is left
unchanged.
To restore the old behaviour, set DoNotRaiseExcetionOnUaFail to True.

Universal Data Access Components92

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

14.20 Migration Wizard

NOTE:
Migration Wizard is available only for Delphi IDE and is not available for C+
+Builder.
UniDAC Migration Wizard allows you to convert your BDE, IBX, ADO, ODAC, SDAC,
MyDAC, and IBDAC projects to UniDAC.
This wizard replaces the database components at the specified project (dfm-and
pas-files) to UniDAC.
To convert a project, perform the following steps:

1.Select UniDAC Migration Wizard from UniDAC menu.
2.Select Replace components and choose the type of the components to replace

corresponding ones with UniDAC and press the Next button.
3.Select the location of the files to search - current open project or disc folder.
4. If you have selected Disc folder on the previous step, specify the required

folder and specify whether to process subfolders. Press the Next button.
5.Select whether to make backup (it is highly recommended to make a backup),

backup location, and log parameters, and press the Next button. Default
backup location is RBackup folder in your project folder.

6.Check your settings and press the Finish button to start the conversion
operation.

7.The project should be saved before conversion. You will be asked before
saving it. Click Yes to continue project conversion. After the project conversion
it will be reopened.

The Wizard just replaces all standard database components. Probably you will need
to make some changes manually to compile your application successfully.
If some problems occur while making changes, you can restore your project from
backup file. To do this perform the following steps:

1.Select UniDAC Migration Wizard from UniDAC menu.
2.Select Restore original files from backup and press the Next button.
3.Select the backup file. By default it is RExpert.reu file in RBackup folder of

your converted project. Press the Next button.
4.Check your settings and press the Finish button to start the conversion

operation.
5.Press Yes in the dialog that appeared.

Your project will be restored to its previous state.

© 1997-2013 Devart. All Rights Reserved.

14.21 64-bit Development with Embarcadero RAD Studio XE2

RAD Studio XE2 Overview

RAD Studio XE2 is the major breakthrough in the line of all Delphi versions of this
product. It allows deploying your applications both on Windows and Mac OS
platforms. Additionally, it is now possible to create 64-bit Windows applications to
fully benefit from the power of new hardware. Moreover, you can create visually
spectacular applications with the help of the FireMonkey GPU application platform.
Its main features are the following:

Using UniDAC 93

© 2013 Enter your company name

 Windows 64-bit platform support;
 Mac OS support;
 FireMonkey application development platform;
 Live data bindings with visual components;
 VCL styles for Windows applications.

For more information about RAD Studio XE2, please refer to World Tour.

Changes in 64-bit Application Development

64-bit platform support implies several important changes that each developer must
keep in mind prior to the development of a new application or the modernization of
an old one.
General
RAD Studio XE2 IDE is a 32-bit application. It means that it cannot load 64-bit
packages at design-time. So, all design-time packages in RAD Studio XE2 IDE are
32-bit.
Therefore, if you develop your own components, you should remember that for the
purpose of developing components with the 64-bit platform support, you have to
compile run-time packages both for the 32- and 64-bit platforms, while design-time
packages need to be compiled only for the 32-bit platform. This might be a source
of difficulties if your package is simultaneously both a run-time and a design-time
package, as it is more than likely that this package won't be compiled for the 64-bit
platform. In this case, you will have to separate your package into two packages,
one of which will be used as run-time only, and the other as design-time only.
For the same reason, if your design-time packages require that certain DLLs be
loaded, you should remember that design-time packages can be only 32-bit and
that is why they can load only 32-bit versions of these DLLs, while at run-time 64-
bit versions of the DLLs will be loaded. Correspondingly, if there are only 64-bit
versions of the DLL on your computer, you won't be able to use all functions at
design-time and, vice versa, if you have only 32-bit versions of the DLLs, your
application won't be able to work at run-time.
Extended type
For this type in a 64-bit applications compiler generates SSE2 instructions instead
of FPU, and that greatly improves performance in applications that use this type a
lot (where data accuracy is needed). For this purpose, the size and precision of
Extended type is reduced:

TYPE 32-bit 64-bit

Extended 10 bytes 8 bytes

The following two additional types are introduced to ensure compatibility in the
process of developing 32- and 64-bit applications:
Extended80 – whose size in 32-bit application is 10 bytes; however, this type
provides the same precision as its 8-byte equivalent in 64-bit applications.
Extended80Rec – can be used to perform low-level operations on an extended
precision floating-point value. For example, the sign, the exponent, and the
mantissa can be changed separately. It enables you to perform memory-related
operations with 10-bit floating-point variables, but not extended-precision
arithmetic operations.
Pointer and Integers
The major difference between 32- and 64-bit platforms is the volume of the used
memory and, correspondingly, the size of the pointer that is used to address large
memory volumes.

http://www.embarcadero.com/world-tour

Universal Data Access Components94

© 2013 Enter your company name

TYPE 32-bit 64-bit

Pointer 4 bytes 8 bytes

At the same time, the size of the Integer type remains the same for both platforms:

TYPE 32-bit 64-bit

Integer 4 bytes 4 bytes

That is why, the following code will work incorrectly on the 64-bit platform:

Ptr := Pointer(Integer(Ptr) + Offset);

While this code will correctly on the 64-bit platform and incorrectly on the 32-bit
platform:

Ptr := Pointer(Int64(Ptr) + Offset);

For this purpose, the following platform-dependent integer type is introduced:

TYPE 32-bit 64-bit

NativeInt 4 bytes 8 bytes

NativeUInt 4 bytes 8 bytes

This type helps ensure that pointers work correctly both for the 32- and 64-bit
platforms:

Ptr := Pointer(NativeInt(Ptr) + Offset);

However, you need to be extra-careful when developing applications for several
versions of Delphi, in which case you should remember that in the previous versions
of Delphi the NativeInt type had different sizes:

TYPE
Delphi
Version

Size

NativeInt D5 N/A

NativeInt D6 N/A

NativeInt D7 8 bytes

NativeInt D2005 8 bytes

NativeInt D2006 8 bytes

NativeInt D2007 8 bytes

NativeInt D2009 4 bytes

NativeInt D2010 4 bytes

NativeInt Delphi XE 4 bytes

NativeInt Delphi XE2 4 or 8 bytes

Out parameters
Some WinAPIs have OUT parameters of the SIZE_T type, which is equivalent to
NativeInt in Delphi XE2. The problem is that if you are developing only a 32-bit
application, you won't be able to pass Integer to OUT, while in a 64-bit application,
you will not be able to pass Int64; in both cases you will have to pass NativeInt.
For example:

procedure MyProc(out Value: NativeInt);
begin
 Value := 12345;
end;
var
 Value1: NativeInt;

Using UniDAC 95

© 2013 Enter your company name

{$IFDEF WIN32}
 Value2: Integer;
{$ENDIF}
{$IFDEF WIN64}
 Value2: Int64;
{$ENDIF}
begin
 MyProc(Value1); // will be compiled;
 MyProc(Value2); // will not be compiled !!!
end;

Win API
If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam
and lParam parameters should be type-casted to the WPARAM/LPARAM type and not
to Integer/Longint.
Correct:

SendMessage(hWnd, WM_SETTEXT, 0, LPARAM(@MyCharArray));

Wrong:

SendMessage(hWnd, WM_SETTEXT, 0, Integer(@MyCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr
for GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and
GWLP_WNDPROC as they return pointers and handles. Pointers that are passed to
SetWindowLongPtr should be type-casted to LONG_PTR and not to Integer/Longint.
Correct:

SetWindowLongPtr(hWnd, GWLP_WNDPROC, LONG_PTR(@MyWindowProc));

Wrong:

SetWindowLong(hWnd, GWL_WNDPROC, Longint(@MyWindowProc));

Pointers that are assigned to the TMessage.Result field should use a type-cast to
LRESULT instead of Integer/Longint.
Correct:

Message.Result := LRESULT(Self);

Wrong:

Message.Result := Integer(Self);

All TWM...-records for the windows message handlers must use the correct Windows
types for the fields:

Msg: UINT; wParam: WPARAM; lParam: LPARAM; Result: LRESULT)

Assembler
In order to make your application (that uses assembly code) work, you will have to
make several changes to it:
 rewrite your code that mixes Pascal code and assembly code. Mixing them is not

supported in 64-bit applications;
 rewrite assembly code that doesn't consider architecture and processor specifics.

You can use conditional defines to make your application work with different
architectures.
You can learn more about Assembly code here: http://docwiki.embarcadero.com/
RADStudio/en/Using_Inline_Assembly_Code You can also look at the following
article that will help you to make your application support the 64-bit platform:
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-
bit_Delphi_Applications_to_64-bit_Windows

http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

Universal Data Access Components96

© 2013 Enter your company name

Exception handling
The biggest difference in exception handling between Delphi 32 and 64-bit is that in
Delphi XE2 64-bit you will gain more performance because of different internal
exception mechanism. For 32-bit applications, the Delphi compiler (dcc32.exe)
generates additional code that is executed any way and that causes performance
loss. The 64-bit compiler (dcc64.exe) doesn't generate such code, it generates
metadata and stores it in the PDATA section of an executable file instead.
But in Delphi XE2 64-bit it's impossible to have more than 16 levels of nested
exceptions. Having more than 16 levels of nested exceptions will cause a Run Time
error.
Debugging
Debugging of 64-bit applications in RAD Studio XE2 is remote. It is caused by the
same reason: RAD Studio XE2 IDE is a 32 application, but your application is 64-bit.
If you are trying to debug your application and you cannot do it, you should check
that the Include remote debug symbols project option is enabled.
To enable it, perform the following steps:

1.Open Project Options (in the main menu Project->Options).
2. In the Target combobox, select Debug configuration - 64-bit Windows

platform. If there is no such option in the combobox, right click "Target
Platforms" in Project Manager and select Add platform. After adding the 64-
bit Windows platform, the Debug configuration - 64-bit Windows
platform option will be available in the Target combobox.

3.Select Linking in the left part of the Project Options form.
4.enable the Include remote debug symbols option.

After that, you can run and debug your 64-bit application.
To enable remote debugging, perform the following steps:

1. Install Platform Assistant Server (PAServer) on a remote computer. You can
find PAServer in the %RAD_Studio_XE2_Install_Directory%\PAServer
directory. The setup_paserver.exe file is an installation file for Windows, and
the setup_paserver.zip file is an istallation file for MacOS.

2.Run the PAServer.exe file on a remote computer and set the password that
will be used to connect to this computer.

3.On a local computer with RAD Studio XE2 installed, right-click the target
platform that you want to debug in Project Manager and select Assign
Remote Profile. Click the Add button in the displayed window, input your
profile name, click the Next button, input the name of a remote computer and
the password to it (that you assigned when you started PAServer on a remote
computer).

After that, you can test the connection by clicking the Test Connection button. If
your connection failed, check that your firewalls on both remote and local
computers do not block your connection, and try to establish a connection once
more. If your connection succeeded, click the Next button and then the Finish
button. Select your newly created profile and click OK.
After performing these steps you will be able to debug your application on a remote
computer. You application will be executed on a remote computer, but you will be
able to debug it on your local computer with RAD Studio XE2.
For more information about working with Platform Assistant Server, please refer to
http://docwiki.embarcadero.com/RADStudio/en/
Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform

© 1997-2013 Devart. All Rights Reserved.

http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform
http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform

Provider-Specific Notes 97

© 2013 Enter your company name

15 Provider-Specific Notes

15.1 UniDAC and Adaptive Server Enterprise

This article provides a brief overview of the ASE data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 ASE-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview

ASE provider is based on the ODBC provider. It uses ASE ODBC driver to work with
database. Main features of ASE data access provider are:
 High performance
 Easy deployment

The full list of ASE provider features can be found at the UniDAC features page.
Both Professional and Trial Editions of UniDAC include the ASE provider. Standard
Edition of UniDAC does not include the ASE provider.

Compatibility

ASE provider supports:
 Adaptive Server Enterprise servers: 11.0 and higher.
 Adaptive Server Enterprise clients: 11.0 and higher.

Requirements

Applications that use the ASE provider require the following components to be
installed on the client computer:
 ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC

is already included as a standard package);
 Adaptive Server Enterprise client software including ODBC driver.

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the aseproviderXX.bpl and odbcproviderXX.bpl files.

To deploy .NET applications, it is required to deploy the Devart.UniDac.ASE.dll and
Devart.UniDac.ODBC.dll files.

http://www.devart.com/unidac/features.html

Universal Data Access Components98

© 2013 Enter your company name

For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

ASE-specific options

TUniConnection

Option name Description

AnsiNull This option is implemented primarily for Transact-SQL
(Adaptive Server Enterprise) compatibility. The AnsiNull
option affects the results of comparison predicates with
NULL constants, and also affects warnings issued for
grouped queries over NULL values.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo If True, an additional query is performed to get information
about returned fields and tables they belong to. The default
value is True.

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened. If False, records
are retrieved when a data-aware component or a program
requests it. The default value is False.

TUniScript

The TUniDump component has no ASE-specific options.

TUniLoader

The TUniLoader component has no ASE-specific options.

TUniDump

The TUniDump component has no ASE-specific options.

Provider-Specific Notes 99

© 2013 Enter your company name

©

 1997-2013 Devart. All Rights Reserved.

15.2 UniDAC and Advantage Database Server

This article provides a brief overview of the Advantage data access provider for
UniDAC, describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 Advantage-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview

Advantage provider is based on the ODBC provider. It uses Advantage ODBC driver
to work with database. Main features of Advantage data access provider are:
 High performance
 Easy deployment

The full list of Advantage provider features can be found at the UniDAC features
page.
Both Professional and Trial Editions of UniDAC include the Advantage provider.
Standard Edition of UniDAC does not include the Advantage provider.

Compatibility

Advantage provider supports:
 Advantage Database Server servers: 8.0 and higher.
 Client (Advantage ODBC driver): 8.0 and higher.

Requirements

Applications that use the Advantage provider require the following components to
be installed on the client computer:
 ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC

is already included as a standard package);
 Advantage ODBC driver.

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the adsproviderXX.bpl and odbcproviderXX.bpl files.

http://www.devart.com/unidac/features.html
http://www.devart.com/unidac/features.html

Universal Data Access Components100

© 2013 Enter your company name

To deploy .NET applications, it is required to deploy the Devart.UniDac.Advantage.
dll and Devart.UniDac.ODBC.dll files.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

Advantage-specific options

TUniConnection

Option name Description

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

ServerTypes Specifies the Advantage server types, to which connections
should be attempted. Valid values include ADS, ALS, and
AIS.
ADL - Remote , ALS - local, and AIS - Internet Servers.
These values can be logically OR'ed together with the "," in
order to choose multiple server types. If multiple types are
specified and multiple server types are available, the order
of precedence is ADS first, AIS second, and ALS last.

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo If True, an additional query is performed to get information
about returned fields and tables they belong to. The default
value is True.

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened.
If False, records are retrieved when a data-aware
component or a program requests it. The default value is
False.

TUniScript

The TUniDump component has no Advantage-specific options.

TUniLoader

The TUniLoader component has no Advantage-specific options.

Provider-Specific Notes 101

© 2013 Enter your company name

TUniDump

The TUniDump component has no Advantage-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.3 UniDAC and DB2

This article provides a brief overview of the DB2 data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 DB2-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview

DB2 provider is based on the ODBC provider. It uses DB2 ODBC driver to work with
a database. Main features of the DB2 data access provider are:
 High performance
 Easy deployment

The full list of the DB2 provider features can be found at the UniDAC features page.
Both Professional and Trial Editions of UniDAC include the DB2 provider. Standard
Edition of UniDAC does not include the DB2 provider.

Compatibility

DB2 provider supports:
 DB2 servers: 8.0 and higher.
 DB2 clients: 8.0 and higher.

Requirements

Applications that use the DB2 provider require the following components to be
installed on the client computer:
 ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC

is already included as a standard package);
 DB2 client software including the ODBC driver.

http://www.devart.com/unidac/features.html

Universal Data Access Components102

© 2013 Enter your company name

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the db2providerXX.bpl and odbcproviderXX.bpl files.

To deploy .NET applications, it is required to deploy the Devart.UniDac.DB2.dll and
Devart.UniDac.ODBC.dll files.
For more information about deployment of the UniDAC-based applications, please,
refer to the common Deployment topic.

DB2-specific options

TUniConnection

Option name Description

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

FunctionPath Use the FunctionPath property to change the current
function path of the connection to the specified value. You
can specify several names separated by comma. This
option can be used to call stored procedures from a schema
other than that of the current user without having to
qualify the objects with the schema name.

Schema Use the Schema property to change the current schema of
the connection to the specified schema. This setting offers
a convenient way to perform operations on objects in a
schema other than that of the current user without having
to qualify the objects with the schema name.

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo If True, an additional query is performed to get information
about returned fields and tables they belong to. The default
value is True.

KeySequence Use the KeySequence property to specify the name of the
sequence that will be used to fill in a key field after a new
record is inserted or posted to the database.

Provider-Specific Notes 103

© 2013 Enter your company name

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened.
If False, records are retrieved when a data-aware
component or a program requests it. The default value is
False.

SequenceMode Set the SequenceMode property to specify which method is
used internally to generate sequenced field.
The following values are allowed for this property:

smInsert
New record is inserted into the dataset with the first
key field populated with a sequenced value. Application
may modify this field before posting the record to the
database.

smPost
Database server populates the key field with a
sequenced value when application posts the record to
the database. Any value put into the key field before
post will be overwritten.

TUniScript

The TUniDump component has no DB2-specific options.

TUniLoader

The TUniLoader component has no DB2-specific options.

TUniDump

The TUniDump component has no DB2-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.4 UniDAC and DBF

This article provides a brief overview of the DBF data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Requirements
 Deployment
 DBF-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Universal Data Access Components104

© 2013 Enter your company name

Overview

DBF provider is based on the ODBC provider. It uses Microsoft dBase ODBC driver to
work with a database. Main features of the DBF data access provider are:
 High performance
 Easy deployment

The full list of the DBF provider features can be found at the UniDAC features page.
Both Professional and Trial Editions of UniDAC include the DBF provider. Standard
Edition of UniDAC does not include the DBF provider.

Requirements

Applications that use the DBF provider require the following components to be
installed on the client computer:
 ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC

is already included as a standard package);
 Microsoft dBase ODBC driver

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the dbfproviderXX.bpl and odbcproviderXX.bpl files.

To deploy .NET applications, it is required to deploy the Devart.UniDac.dbf.dll and
Devart.UniDac.ODBC.dll files.
For more information about deployment of the UniDAC-based applications, please,
refer to the common Deployment topic.

DBF-specific options

TUniConnection

Option name Description

CollatingSequence Specify the collation sequence. Available values: ASCII and
International. Default value is ASCII.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

http://www.devart.com/unidac/features.html

Provider-Specific Notes 105

© 2013 Enter your company name

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo If True, an additional query is performed to get information
about returned fields and tables they belong to. The default
value is True.

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened.
If False, records are retrieved when a data-aware
component or a program requests it. The default value is
False.

TUniScript

The TUniDump component has no DBF-specific options.

TUniLoader

The TUniLoader component has no DBF-specific options.

TUniDump

The TUniDump component has no DBF-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.5 UniDAC and InterBase/Firebird

This article provides a brief overview of InterBase data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 InterBase-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

 InterBase-specific notes

o Parallel transactions management

Overview

InterBase data access provider is based on the InterBase Data Access Components (
IBDAC) library, which is one of the best known Delphi data access solutions for
InterBase and Firebird. The main features of InterBase data access provider are:
 High performance

http://www.devart.com/ibdac/

Universal Data Access Components106

© 2013 Enter your company name

 Easy deployment
 Comprehensive support for the latest versions of InterBase/Firebird server

The full list of InterBase provider features can be found at the UniDAC product page
.
Both Professional and Trial Edition of UniDAC include the InterBase provider. For
Standard Edition of UniDAC, the InterBase provider can be installed with IBDAC.

Compatibility

InterBase provider supports:
 InterBase: versions 5.x and higher.
 Firebird: versions 2.x, 1.x.
 Yaffil.

Requirements

Applications that use the InterBase provider require InterBase/Firebird client
software only. The InterBase provider dynamically loads InterBase client DLL
(GDS32.DLL or FBClient.dll for Firebird) available on user systems. To locate DLL
you can set the ClientLibrary specific option of TUniConnection with the path to the
client library. By default the InterBase provider searches a client library in
directories specified in the PATH environment variable.

Deployment

To deploy Win32 applications built with run-time packages it is not required to
deploy the ibdacXX.bpl file with UniDAC Professional Edition. But it is necessary to
deploy the ibdacXX.bpl file with Standard Edition of UniDAC. This happens because
in the UniDAC Professional Edition functionality of ibdacXX.bpl is included in the
correspondent ibproviderXX.bpl, when in Standard Edition of UniDAC, ibproviderXX.
bpl is just a wrapper on ibdacXX.bpl.
The same is concerning Devart.IbDac.dll and Devart.UniDac.InterBase.dll
assemblies in .NET applications. Devart.IbDac.dll is used only in applications built
with UniDAC Standard Edition. In UniDAC Professional Edition, the Devart.UniDac.
InterBase.dll assembly includes functionality of Devart.IbDac.dll.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

InterBase-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune behaviour for each server individually. For
thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc, TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a string list. Therefore you can use the following syntax to assign
an option value:

 TUniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

http://www.devart.com/unidac/features.html

Provider-Specific Notes 107

© 2013 Enter your company name

TUniConnection

Option name Description

CharLength Specifies the size in bytes of a single character. Set this
option with the number in range [0..6] to reflect InterBase
support for the national languages. Setting CharLength to
zero will instruct TUniConnection to interrogate InterBase
server for the actual character length.
The default value is 1.

Charset Sets character set that IBDAC uses to read and write
character data.

ClientLibrary Use the ClientLibrary option to set or get the client library
location.

Protocol Network protocol of connection with InterBase server. The
default value is TCP.

Role InterBase connection role.

SQLDialect Use SQLDialect to set or return SQL Dialect used by
InterBase client. The SQLDialect property cannot be set to
a value greater than the database SQL dialect when the
connection is active. If the connection is inactive, the
SQLDialect option will be downgraded to match the
database SQL dialect.

UseUnicode Enables or disables Unicode support. Affects on the
character data fetched from the server. When set to True
all character data is stored as WideStrings, and
TStringField is replaced with TWideStringFiled.

TUniSQL

The TUniSQL component has no InterBase-specific options.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

AutoClose The cursor will be closed after fetching all rows. Allows to
reduce the number of opened cursors on the server.

CacheArrays If True (the default value), then local memory buffer is
allocated to hold a copy of the Array content. See the notes
below for further details.

CacheBlobs If True (the default value), then local memory buffer is
allocated to hold a copy of the BLOB content. See the notes
below for further details.

DeferredArrayRead If True, all InterBase array values are fetched only when
they are explicitly requested. Otherwise the entire record
set with any array values is returned when dataset is
opened. Whether array values are cached locally to be
reused later or not is controlled by the CacheArrays option.

DeferredBlobRead If True, all InterBase BLOB values are fetched only when
they are explicitly requested. Otherwise the entire record
set with any BLOB values is returned when dataset is
opened. Whether BLOB values are cached locally to be
reused later or not is controlled by the CacheBlobs option.

Universal Data Access Components108

© 2013 Enter your company name

FetchAll If True, all records of the query are requested from
database server when the dataset is being opened. If False,
records are retrieved when a data-aware component or a
program requests it. The default value is False.

FieldsAsString If True, then all non-BLOB fields are treated as being of
string data type.

GeneratorMode Set the GeneratorMode property to specify which method is
used internally to generate sequenced field.
The following values are allowed for this property:

gmInsert
New record is inserted into the dataset with the first
key field populated with a sequenced value. Application
may modify this field before posting the record to the
database.

gmPost
Database server populates key field with a sequenced
value when application posts the record to the database.
Any value put into key field before post will be
overwritten.

GeneratorStep Use the GeneratorStep option to set the increment for
increasing or decreasing current generator value when
using automatic key field value generation feature. The
default value is 1.

KeyGenerator Use the KeyGenerator option to specify the name of a
generator that will be used to fill in a key field after a new
record is inserted or posted to the database.
KeyGenerator is used only if the KeyFields property is
assigned.

StreamedBlobs If True, then all edited BLOBs are saved as streamed BLOBs
and all streamed BLOBs are handled as streamed.
Otherwise streamed BLOBs are handled as usual
segmented BLOBs and all edited BLOBs are saved as
segmented BLOBs. Setting this option to True allows using
benefits of the CacheBlobs option.

Note: The CacheBlobs option controls the way streamed BLOB objects are handled.
If False, application can access streamed BLOB values on the server side without
caching BLOBs on the client side. Only requested portions of data are fetched.
Setting CacheBlobs to False may bring up the following benefits for time-critical
applications: reduced traffic over the network since only required data are fetched,
less memory is needed on the client side, because returned record sets do not hold
contents of BLOB fields. This feature is available only for streamed BLOBs and only
if StreamedBlobs option is set to True. This option doesn't make sense if
DefferedBlobRead is set to False because all BLOB values are fetched to the dataset
in that case.

TUniScript

Option name Description

Provider-Specific Notes 109

© 2013 Enter your company name

AutoDDL Use the AutoDDL property to determine whether DDL
statements must be executed in a separate transaction.

TUniLoader

The TUniLoader component has no InterBase-specific options.

TUniDump

The TUniDump component has no InterBase-specific options.

InterBase-specific notes

This chapter describes several special cases of using InterBase data provider.

Parallel transactions management

InterBase and Firebird database servers support multiple parallel transactions within
one connection. You can use this feature with UniDAC and InterBase provider. You
should link the TUniTransaction component to a component you want to interact
with the sever within a separate transaction. To link a TUniTransaction object to a
component, for example to TUniQuery, assign the TUniTranaction object to the
TUniQuery.Transaction property:

 UniQuery1.Transaction := UniTransaction1;

The Transaction property persists in the following components:

TUniQuery

,

TUniTable

,

TUniStoredProc

,

TUniSQL

,

TUniScript

,

TUniMetaData

.

©

 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components110

© 2013 Enter your company name

15.6 UniDAC and Microsoft Access

This article provides a brief overview of the Microsoft Access data access provider
for UniDAC, describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 Access-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview

Access provider is based on the ODBC provider. It uses Microsoft Access ODBC
driver to work with a database. Main features of the Access data access provider
are:
 High performance
 Easy deployment

The full list of the Access provider features can be found at the UniDAC features
page.
Both Professional and Trial Editions of UniDAC include the Access provider. Standard
Edition of UniDAC does not include the Access provider.

Compatibility

Access provider supports Microsoft Access version 95, 97, 2000, 2003, and 2007.

Requirements

Applications that use the Access provider require Microsoft Data Access Components
(MDAC) to be installed on the client computer. In the current versions of Microsoft
Windows, since Windows 2000, MDAC is already included as a standard package.

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the accessproviderXX.bpl and odbcproviderXX.bpl files.

To deploy .NET applications, it is required to deploy the Devart.UniDac.Access.dll
and Devart.UniDac.ODBC.dll files.
For more information about deployment of the UniDAC-based applications, please,
refer to the common Deployment topic.

http://www.devart.com/unidac/features.html
http://www.devart.com/unidac/features.html

Provider-Specific Notes 111

© 2013 Enter your company name

Access-specific options

TUniConnection

Option name Description

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExclusiveLock If True, a database will be opened in the Exclusive mode
and can be accessed by only one user at a time.
Performance is enhanced when running in the Exclusive
mode.

ExtendedAnsiSQL If True, an extended SQL support is enabled.
Two new data types are available in Jet 4.0 databases
when the ExtendedAnsiSQL flag is turned on:
SQL_DECIMAL and SQL_NUMERIC. The default precision
and scale are 18 and 0, respectively. Data accessed via
ODBC that is typed as SQL_DECIMAL or SQL_NUMERIC
will be mapped to Microsoft Jet Decimal instead of
Currency.
When the ExtendedAnsiSQL flag is turned off, you cannot
create tables with decimal or numeric types, and these
types will not appear in SQLGetTypeInfo(). However, if
the table contains the new data types, they can be used
with the correct data types.

ExtendedFieldsInfo If True, an additional query is performed to get information
about returned fields and tables they belong to. The default
value is True.

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened.
If False, records are retrieved when a data-aware
component or a program requests it. The default value is
False.

SystemDatabase The full path to the Microsoft Access system database to be
used with the Microsoft Access database you want to
access.

Universal Data Access Components112

© 2013 Enter your company name

TUniScript

The TUniDump component has no Access-specific options.

TUniLoader

The TUniLoader component has no Access-specific options.

TUniDump

The TUniDump component has no Access-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.7 UniDAC and MySQL

This article provides a brief overview of MySQL data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 MySQL-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview
MySQL data access provider is based on the MySQL Data Access Components (
MyDAC) library, which provides direct access to MySQL database servers from
Delphi, C++Builder and Lazarus (FPC). The main features of MySQL data access
provider are:
 Direct access to server data without using client library. Does not require

installation of the client library or other data provider layers (such as BDE and
ODBC)
 High performance
 Easy deployment
 Comprehensive support for the latest versions of MySQL server

The full list of MySQL provider features can be found at the UniDAC product page.
Both Professional and Trial Edition of UniDAC include the MySQL provider. For
Standard Edition of UniDAC, the MySQL provider can be installed with MyDAC.

Compatibility

http://www.devart.com/mydac/
http://www.devart.com/unidac/features.html

Provider-Specific Notes 113

© 2013 Enter your company name

MySQL provider supports:
 MySQL servers: 5.1, 5.0, 4.1, 4.0, and 3.23.
 MySQL Embedded servers: 5.1, 4.1, and 4.0.
 MySQL clients: Direct mode, 5.1, 5.0, 4.1, 4.0, and 3.23.

Requirements

If you use MySQL provider to connect to MySQL in Direct mode, you do not need to
have MySQL client library on your machine or deploy it with your MySQL provider-
based application.
If you use MySQL provider to connect to MySQL in Client mode, you need to have
access to the MySQL client library. In particular, you will need to make sure that the
MySQL client library is installed on the machines your MySQL provider-based
application is deployed to. MySQL client library is libmysql.dll file for Windows.
Please refer to the description of LoadLibrary() function for detailed information
about MySQL client library file location. You may need to deploy the MySQL client
library with your application or require that users have it installed.
If you are working with Embedded server, you should have access to Embedded
MySQL server library (libmysqld.dll).

Deployment

MySQL provider applications can be built and deployed with or without run-time
libraries.

You do not need to deploy any files with MySQL provider-based applications built
without run-time packages, provided you are using a registered version of UniDAC.
You can set your application to be built with run-time packages. In this case, you
will need to deploy dacXX.bpl and mydacXX.bpl files with your Win32 application.
To deploy .NET applications, you should deploy Devart.MyDac.dll and Devart.
UniDac.MySQL.dll assemblies.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

MySQL-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune behaviour for each server individually. For
thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc,TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a sting list. Therefore you can use the following syntax to assign
an option value:

UniQuery.SpecificOptions.Values['FieldsAsString'] := 'True';

Below you will find the description of allowed options grouped by components.

TUniConnection

Universal Data Access Components114

© 2013 Enter your company name

Option name Description

Charset Setups the character set used by the client.

Compress Use compression on transferring data. Setting this property
to True is quite effective on transferring big volume data
through slow connection. This property is ignored under
CLR. The default value is False.

ConnectionTimeout Specifies the amount of time in seconds that can be
expired before an attempt to make a connection is
considered unsuccessful.

Direct Works without using MySQL client library (libmysql.dll).
Used only if Embedded is disabled.

Embedded If True, connects to Embedded MySQL server. If False,
connects to MySQL server. The default value is False.

Protocol Specifies which protocol to use when connecting to the
server:

mpDefault
Similar to mpTCP, except the cases when you connect
to a local server and the OS supports sockets (Unix) or
named pipes (Windows), they are used instead of TCP/
IP to connect to the server.

mpTCP
Use TCP/IP to connect to the server.

mpSocket
Uses sockets to connect to the server. Can be used with
Direct set to False and libmysql.dll 4.1.

mpPipe
Use NamedPipes to connect to the server.

mpMemory
To connect to the server using SharedMem. Can be
used with Direct set to False and libmysql.dll 4.1.

mpSSL
Use protected SSL connection with the server.

mpHttp
Uses HTTP Network Tunneling to connect to the server.

HttpUrl Holds the url of the tunneling PHP script.

HttpUsername Holds the user name for HTTP authorization.

HttpPassword Holds the password for HTTP authorization.

ProxyHostname Holds the host name or IP address to connect to proxy
server.

ProxyPort Used to specify the port number for TCP/IP connection with
proxy server.

ProxyUsername Holds the proxy server account name.

ProxyPassword Holds the password for the proxy server account.

SSLCACert CACert is the pathname to the certificate authority file.

SSLCert Cert is the pathname to the certificate file.

SSLChipherList ChipherList is a list of allowable ciphers to use for SSL
encryption.

SSLKey Key is the pathname to the key file.

Provider-Specific Notes 115

© 2013 Enter your company name

UseUnicode Informs server that all data between client and server sides
will be passed in UTF-8 coding. Setting this option converts
all fields of TStringField type into TWideStringField that
allows to work correctly with symbols of almost all
languages simultaneously. On the other hand, it causes a
delay in working. The default value is False.

TUniSQL

Option name Description

CommandTimeout Specifies the amount of time that is expired before an
attempt to execute a command is considered unsuccessful.
Measured in seconds.
If a command is successfully executed prior to the
expiration of the seconds specified, CommandTimeout has
no effect. The default value is 0 (infinite).

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CheckRowVersion Determines whether the dataset checks for rows
modifications made by another user on automatic
generation of SQL statement for update or delete data. If
CheckRowVersion is True and DataSet has timestamp field
when only this field is added into WHERE clause of the
generated SQL statement. If CheckRowVersion is True, but
there is no TIMESTAMP field, then to WHERE clause all non-
BLOB fields will be added. The default value is False.

CommandTimeout Specifies the amount of time that is expired before an
attempt to execute a command is considered unsuccessful.
Measured in seconds.
If a command is successfully executed prior to the
expiration of the seconds specified, CommandTimeout has
no effect. The default value is 0 (infinite).

CreateConnection Specifies if an additional connection to a server should be
established to execute an additional query in the
FetchAll=False mode. If a DataSet is opened in
FetchAll=False, the current connection is blocked until all
records have been fetched. If this option is set to True, an
additional connection is created to fetch data to avoid
blocking of the current connection.

EnableBoolean Specifies the method of representation of TINYINT(1)
fields. If set to True, these fields will be represented as
TBooleanFiled; otherwise, as TSmallintField. The default
value is True.

Universal Data Access Components116

© 2013 Enter your company name

FetchAll When set to True, all records of the query are requested
from the database server when dataset is being opened.
When set to False, records are retrieved when a data-aware
component or a program requests it. If a query can return
a lot of records, set this property to False if initial response
time is important.
When the FetchAll property is False, the first call to Locate
and LocateEx methods may take a lot of time to retrieve
additional records to the client side.

FieldsAsString All non-BLOB fields are stored as string (native MySQL
format). The default value is False.

NullForZeroDate For datetime fields with invalid values, for example '2002-
12-32', MySQL returns on fetch '0000-00-00' value.
According to NullForZeroDate option this value will be
represented as Null or '0001-01-01' ('0100-01-01' for CLR).
The default value is True.

TUniScript

The TUniScript component has no MySQL-specific options.

TUniLoader

Option name Description

LockTable Locks tables while inserting data.

Delayed Uses INSERT DELAYED syntax.

RowsPerQuery Use the RowsPerQuery property to get or set the number of
rows that will be send to the server for one time. The
default value is 0. In this case rows will be grouped by
16Kb (the default value of net_buffer_length).

DuplicateKeys Use the DuplicateKeys property to specify in what way
conflicts with duplicated key values will be resolved.

TUniDump

Option name Description

AddLock Use the AddLock property to execute LOCK TABLE before
data insertion. Used only with doData in P:Devart.MyDac.
TMyDump.Objects.

DisableKeys Add /*!40000 ALTER TABLE ... DISABLE KEYS */ before
inserting data. Used only with doData in P:Devart.MyDac.
TMyDump.Objects.

HexBlob If the HexBlob property is True, the BLOB values are
presented in hexdecimal notation.

UseExtSyntax Set the UseExtSyntax propery to use extended syntax of
INSERT on data insertion. Used only with doData in P:
Devart.MyDac.TMyDump.Objects.

Provider-Specific Notes 117

© 2013 Enter your company name

UseDelayedIns Set the UseDelayedIns property to use INSERT DELAYED.
Used only with doData in P:Devart.MyDac.TMyDump.
Objects.

©

 1997-2013 Devart. All Rights Reserved.

15.8 UniDAC and NexusDB

This article provides a brief overview of the NexusDB data access provider for
UniDAC, describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 NexusDB-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview
The main features of the NexusDB data access provider are:
 High performance
 Easy deployment
 Comprehensive support for the latest versions of NexusDB server

Both Professional and Trial Editions of UniDAC include the NexusDB provider.
Standard Edition of UniDAC does not include the NexusDB provider.
NexusDB provider is supplied with source code.

Compatibility

NexusDB provider supports NexusDB 3.x.

Requirements

You should have installed NexusDB components for corresponding IDE. NexusDB
provider uses the following NexusDB libraries: NexusDBXXXdbXX,
NexusDBXXXsdXX, NexusDBXXXllXX, NexusDBXXXsrXX, NexusDBXXXptXX,
NexusDBXXXtwXX, NexusDBXXXsqXX, NexusDBXXXseXX, NexusDBXXXstXX,
NexusDBXXXreXX.
Before using the NexusDB provider, you have to rebuild and reinstall its provider
package. You can find the detailed steps describing the installation of the package
in the UniDAC_Install_Dir\Source\NexusDBProvider\Readme.txt file, where
UniDAC_Install_Dir is a directory where you installed UniDAC.

Universal Data Access Components118

© 2013 Enter your company name

Deployment

NexusDB provider applications can be built and deployed with or without run-time
libraries.

You do not need to deploy any files with NexusDB provider-based applications built
without run-time packages. You can set your application to be built with run-time
packages. In this case, you will need to deploy the nexusproviderXX.bpl file, and
following NexusDB libraries: NexusDBXXXdbXX, NexusDBXXXsdXX,
NexusDBXXXllXX, NexusDBXXXsrXX, NexusDBXXXptXX, NexusDBXXXtwXX,
NexusDBXXXsqXX, NexusDBXXXseXX, NexusDBXXXstXX, NexusDBXXXreXX. For
more information about deployment of the UniDAC-based applications, please, refer
to the common Deployment topic.

NexusDB-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune behaviour for each server individually. For
thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc, TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a sting list. Therefore you can use the following syntax to assign
an option value:
UniConnection.SpecificOptions.Values['FetchAll'] := 'True';
Below you will find the description of allowed options grouped by components.

UniQuery.SpecificOptions.Values['FieldsAsString'] := 'True';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ConnectionTimeout Specifies the amount of time in seconds that can be
expired before an attempt to make a connection is
considered unsuccessful.

DatabaseReadOnly If True, no writing is required, allows for sharing databases
between servers.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

Provider-Specific Notes 119

© 2013 Enter your company name

CursorUpdate Specifies what way data updates reflect on database when
modifying dataset by using server NexusDB cursors (the
ServerCursor option is set to True). If True, all dataset
modifications pass to database by server cursors. It
increases performance but doesn't allow to use procedures
or enhanced queries for additional data changes. If False,
all dataset updates pass to server by SQL statements
generated automatically or specified in SQLUpdate,
SQLInsert or SQLDelete. The default value is True.

FetchAll When set to True, all records of the query are requested
from the database server when dataset is being opened.
When set to False, records are retrieved when a data-aware
component or a program requests it. If a query can return
a lot of records, set this property to False if initial response
time is important.
When the FetchAll property is False, the first call to Locate
and LocateEx methods may take a lot of time to retrieve
additional records to the client side.

ReadOnly Use the ReadOnly option to prevent users from updating,
inserting, or deleting data in the dataset. By default,
ReadOnly is False, meaning that users can potentially alter
data stored in the dataset. To guarantee that users cannot
modify or add data to a dataset, set ReadOnly to True.

ServerCursor By default, ServerCursor is False, meaning that NexusDB
provider reads data to the own memory when dataset is
opened. NexusDB provider performs all database
operations using SQL statements generated automatically
or specified in SQLUpdate, SQLInsert or SQLDelete. If True,
then NexusDB provider calls server NexusDB cursor for
resultset record access and then reads data from it. So,
stored data aren't duplicated that allows you to decrease
memory charges. Data to the server can be written using
server cursor or SQL queries in dependence of
CursorUpdate option. So the TCustomDADataSet.
FetchRows, FetchAll, CachedUpdates properties don't have
any influence on such cursors and only the CursorUpdate
option does.

TUniScript

The TUniScript component has no NexusDB-specific options.

TUniLoader

Option name Description

DirectLoad If True, all inserted data pass to database by server
NexusDB cursors. If False, all inserted data pass to server
by SQL statements. The default value is True.

TUniDump

Universal Data Access Components120

© 2013 Enter your company name

The TUniDump component has no NexusDB-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.9 UniDAC and PostgreSQL

This article provides a brief overview of PostgreSQL data access provider for
UniDAC, describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 PostgreSQL-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview
Main features of PostgreSQL data access provider are:
 Direct access to server without PostgreSQL client library
 High performance
 Easy deployment
 Comprehensive support for the latest versions of PostgreSQL server

The full list of PostgreSQL provider features can be found at the UniDAC product
page.
Both Professional and Trial Edition of UniDAC include the PostgreSQL provider. For
Standard Edition of UniDAC, the PostgreSQL provider can be installed with
PostgreSQL Data Access Componets (PgDAC).

Compatibility

PostgreSQL provider supports PostgreSQL server since 7.1 version up to 8.3.

Requirements

The provider does not require installation of any additional software on the client.

Deployment

To deploy Win32 applications built with run-time packages, it is not required to
deploy the pgdacXX.bpl file with UniDAC Professional Edition. But it is necessary to
deploy the pgdacXX.bpl file with Standard Edition of UniDAC. This happens because
in UniDAC Professional Edition functionality of pgdacXX.bpl is included in the

http://www.devart.com/unidac/features.html
http://www.devart.com/unidac/features.html

Provider-Specific Notes 121

© 2013 Enter your company name

correspondent pgproviderXX.bpl, when in Standard Edition of UniDAC,
pgproviderXX.bpl is just a wrapper on pgdacXX.bpl.

The same concerns Devart.PgDac.dll and Devart.UniDac.PostgreSQL.dll assemblies
in .NET applications. Devart.PgDac.dll is used only in applications built with UniDAC
Standard Edition. In UniDAC Professional Edition, the Devart.UniDac.PostgreSQL.dll
assembly includes functionality of Devart.PgDac.dll.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

PostgreSQL-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune behaviour for each server individually. For
thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc, TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a sting list. Therefore you can use the following syntax to assign
an option value:

UniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

Charset Setups the character set which will be used to transfer
character data between client and server.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

ProtocolVersion Set the ProtocolVersion to pv20 to work with PostgreSQL
servers 7.3 or lower that don't support the 3.0 protocol.

Schema Use the Schema property to set the search path for the
connection to the specified schema. This setting offers a
convenient way to perform operations on objects in a
schema other than that of the current user without having
to qualify the objects with the schema name.

SSLCACert The pathname to the certificate authority file.

SSLCert The pathname to the certificate file.

SSLChipherList The list of allowable ciphers to use for SSL encryption.

SSLKey The pathname to the key file.

SSLMode This option determines whether or with what priority an
SSL connection will be negotiated with the server.
If PostgreSQL is compiled without SSL support, using
option smRequire will cause an error, while options
smAllow and smPrefer will be accepted, but PgDAC will not
in fact attempt an SSL connection.

Universal Data Access Components122

© 2013 Enter your company name

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

UnpreparedExecute If True, the simple execute is used for SQL statement.
Statement is not prepared before execute. It allows to add
multiple statements separated by semicolon to the SQL
property.

UseParamTypes Set this option to True to disable automatic detection of
parameter types. When this option is True, data types of
parameters are set basing on the DataType property. When
this option is False, data types of the parameters are
detected by server automatically.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

AutoDeleteBlob If True (the default value), the BLOBs are deleted from
database automatically when a record that holds these
BLOBs' OIDs is deleted from dataset.

CacheBlobs If True (the default value), then local memory buffer is
allocated to hold a copy of the BLOB content.

CommandTimeout The time to wait for a statement to execute.

CursorWithHold When this option is False (default), an active transaction is
required to open a query in FetchAll=False mode. If there is
no active transaction, PgDAC opens additional internal
connection and starts transaction on this connection.
When this option is True, PgDAC uses DECLARE CURSOR ...
WITH HOLD statement to open the query. In this case no
active transaction is required but this may take additional
server resources.

DeferredBlobRead If True, all BLOB values are fetched only when they are
explicitly requested. Otherwise entire record set with any
BLOB values is returned when dataset is opened. Whether
BLOB values are cached locally to be reused later is
controlled by the CacheLobs option.

ExtendedFieldsInfo If True, an additional query is performed to get information
about returned fields and tables they belong to. The default
value is False.

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened.
If False, records are retrieved when a data-aware
component or a program requests it. The default value is
True.

Provider-Specific Notes 123

© 2013 Enter your company name

KeySequence Use the KeySequence property to specify the name of a
sequence that will be used to fill in a key field after a new
record is inserted or posted to the database.

OIDAsInt If True, OID fields are mapped on TIntegerField. If False,
values of OID fields are treated as large objects' OID, and
these fields are mapped on TBlobField.

SequenceMode Set the SequenceMode property to specify which method is
used internally to generate sequenced field. The following
values are allowed for this property:

smInsert
New record is inserted into the dataset with the first
key field populated with a sequenced value. Application
may modify this field before posting the record to the
database.

smPost
Database server populates key field with a sequenced
value when application posts the record to the database.
Any value put into the key field before post will be
overwritten.

UnknownAsString If True, all PostgreSQL data types that are fetched as text,
and don't have limited field size, are mapped on
TStringField with default size 8192. If False, such types are
mapped on TMemoField. The TEXT data type is always
mapped on TMemoField regardless of this option.

UnpreparedExecute If True, the simple execute is used for SQL statement.
Statement is not prepared before execute. It allows to add
multiple statements separated by semicolon to the SQL
property.

UseParamTypes Set this option to True to disable automatic detection of
parameter types. When this option is True, data types of
parameters are set basing on the DataType property. When
this option is False, data types of the parameters are
detected by server automatically.

TUniScript

The TUniScript component has no PostgreSQL-specific options.

TUniLoader

Option name Description

TextMode Use the TextMode property to load data in the text mode.
TPgLoader supports two load modes: text and binary. By
default the binary mode is used for a connection with 3.0
protocol. Set TextMode property to True to force text mode.
In binary mode TPgLoader may work slightly faster but
some data type are not supported in this mode. In text
mode you can load data to columns with any PostgreSQL
data type.

Universal Data Access Components124

© 2013 Enter your company name

BufferSize This property contains the size of the memory buffer used
by TPgLoader. When buffer is filled, the loader sends block
of data to the server.

TUniDump

The TUniDump component has no PostgreSQL-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.10 UniDAC and ODBC

This article provides a brief overview of the ODBC data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 ODBC-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview

Main features of the ODBC data access provider are:
 High performance
 Easy deployment
 Support for any DBMS that comes with ODBC driver

The full list of the ODBC provider features can be found at the UniDAC features page
.
Both Professional and Trial Editions of UniDAC include the ODBC provider. Standard
Edition of UniDAC does not include the ODBC provider.

Compatibility

ODBC provider supports ODBC 3.x.

Requirements

Applications that use the ODBC provider require ODBC to be installed on the client
computer. In the current versions of Microsoft Windows, since Windows 2000, ODBC
is already included as a standard package.
To use the ODBC provider with specific DBMS, ODBC driver for the required DBMS

http://www.devart.com/unidac/features.html

Provider-Specific Notes 125

© 2013 Enter your company name

must be installed.

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the odbcproviderXX.bpl file.

To deploy .NET applications, it is required to deploy the Devart.UniDac.ODBC.dll file.
For more information about deployment of the UniDAC-based applications, please,
refer to the common Deployment topic.

ODBC-specific options

TUniConnection

Option name Description

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

DSNType This option specifies the meaning of the value in the Server
property. DSNType can be one of the following:

ntAuto
Autodetect data source name type

ntName
Data source name registered with ODBC Administrator
(User DSN or System DSN)

ntFile
Name of a file with data source information (File DSN).

ntConnectionString
ODBC connection string

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo If True, an additional query is performed to get information
about the returned fields and tables they belong to. The
default value is False.

Universal Data Access Components126

© 2013 Enter your company name

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened.
If False, records are retrieved when a data-aware
component or a program requests it. The default value is
False.

TUniScript

The TUniDump component has no ODBC-specific options.

TUniLoader

The TUniLoader component has no ODBC-specific options.

TUniDump

The TUniDump component has no ODBC-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.11 UniDAC and Oracle

This article provides a brief overview of Oracle data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 Oracle-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

 Oracle-specific notes
 Connecting in Direct mode

Overview

Oracle data access provider is based on the Oracle Data Access Components (ODAC)
library, which is one of the best known Delphi data access solutions for Oracle. The
main features of Oracle data access provider are:
 Direct access to the server without Oracle client (OCI)
 High performance
 Easy deployment
 Comprehensive support for the latest versions of Oracle server

The full list of Oracle provider features can be found at the UniDAC product page.
Both Professional and Trial Edition of UniDAC include the Oracle provider. For

http://www.devart.com/odac/
http://www.devart.com/unidac/features.html

Provider-Specific Notes 127

© 2013 Enter your company name

Standard Edition of UniDAC, the Oracle provider can be installed with ODAC.

Compatibility

Oracle provider supports:
 Oracle servers: 10g, 9i, 8i, 8.0, and 7.3, including Oracle 10g Express and Oracle

8i Personal and Lite editions.
 x86 versions of the following Oracle clients: 10g, 9i, 8i, 8.0, and 7.3.

Requirements

If your application is working in the Direct mode, it is not required to install any
additional software on the client. For application that has Direct mode disabled, it is
required to install the Oracle client.

Deployment

To deploy Win32 applications built with run-time packages, it is not required to
deploy the odacXX.bpl file with UniDAC Professional Edition. But it is necessary to
deploy the odacXX.bpl file with Standard Edition of UniDAC. This happens because
in the UniDAC Professional Edition functionality of odacXX.bpl is included in the
correspondent oraproviderXX.bpl, when in Standard Edition of UniDAC,
oraproviderXX.bpl is just a wrapper on odacXX.bpl.
The same concerns Devart.Odac.dll and Devart.UniDac.Oracle.dll assemblies in .
NET applications. Devart.Odac.dll is used only in applications built with UniDAC
Standard Edition. In UniDAC Professional Edition, the Devart.UniDac.Oracle.dll
assembly includes functionality of Devart.Odac.dll.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

Oracle-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune behaviour for each server individually. For
thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc, TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a sting list. Therefore you can use the following syntax to assign
an option value:

 UniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

CharLength Serves for national languages support. Means the character
size in bytes. Allowed values are in range [0..6]. Zero
means that the actual character length will be requested
from the Oracle server.
The default value is 1.

Charset Setups the character set which will be used to transfer
character data between client and server.
Supported with Oracle 8 client only.

Universal Data Access Components128

© 2013 Enter your company name

ClientIdentifier Use this property to determine the client identifier in the
session. The client identifier can be set in the session
handle at any time in the session. Then, on the next
request to the server, the information is propagated and
stored in the server session. The first character of the
ClientIdentifier should not be ':'. If it is, an exception will
be raised.
This property has no effect if you use the version of the
server earlier than Oracle 9.

ConnectMode Specifies which system privileges to use when connecting
to the server. The following values are supported for this
option:

cmNormal (default)
Connect as an ordinary user.

cmSysOper
Connect with SYSOPER role.

cmSysDBA
Connect with SYSDBA role.

cmSysASM
Connect with SYSASM role.

User must have SYSOPER, SYSDBA, SYSASM or all three
roles granted before he connects to the server and wishes
to use any of these roles. ConnectMode is not supported for
OCI 7.

ConnectionTimeout The time to wait for a connection to open before raising an
exception. Works only when the Direct mode is set to True.

ConvertEOL Affects line break behavior in string fields and parameters.
When fetching strings (including CLOBs and LONGs) with
ConvertEOL = True dataset converts their line breaks from
LF to CRLF form. And when posting strings to server with
ConvertEOL turned on their line breaks converted from
CRLF to LF form. By default, strings are not converted.

DateFormat Specifies the default date format used when Oracle makes
conversions from internal date format into string values
and vice versa. An example of valid expression for this
property could be "MM/DD/YYYY".

DateLanguage Specifies the default language used when Oracle parses
internal date format into string values and vice versa.
Examples of valid expressions for this property could be
"French", "German" etc.

Direct If set to True, connection is performed directly over TCP/IP,
and does not require Oracle software on the client side.
Otherwise, provider connects in Client mode.

EnableIntegers When set to True, the provider maps Oracle numbers with
precision less than 10 to TIntegerField. If EnableIntegers is
set to False, numbers are mapped to TFloatField or XXX.

Provider-Specific Notes 129

© 2013 Enter your company name

EnableNumbers When set to True, the provider maps Oracle numbers with
precision greater than 15 to TOraNumberField. Otherwise
they are mapped to TFloatFiled.

HomeName Set the HomeName option to select which Oracle client will
be used in your application. Use this property in cases
when there is a number of Oracle clients on the machine.
The Oracle provider searches all available homes in the
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE registry
folder. If the HomeName option is set to an empty string,
the provider uses the first directory from the list of homes
encountered in environment PATH variable as the default
Oracle home.

OptimizerMode Use the OptimizerMode property to get or set the default
optimizer mode for connection. The OptimizerMode
property can have one of the following values:

omDefault
Session optimizer mode will not be changed.

omFirstRowsNN
Instruct Oracle to optimize a SQL statement for
fast response. It instructs Oracle to choose the
plan that returns the first NN rows most
efficiently. If you use the version of the server
earlier than Oracle 9.0, these values have the
same effect as omFirstRows.

omFirstRows
This mode is retained for backward compatibility
and plan stability. It optimizes for the best plan
to return the first single row.

omAllRows
Explicitly chooses the cost-based approach to
optimize a statement block with a goal of best
throughput (that is, minimum total resource
consumption).

omChoose
Causes the optimizer to choose between the rule-
based and cost-based approaches for a SQL
statement. The optimizer selection is based on
the presence of statistics for the tables accessed
by the statement. If the data dictionary has
statistics for at least one of these tables, then
the optimizer uses the cost-based approach and
optimizes with the goal of the best throughput. If
the data dictionary does not have statistics for
these tables, then it uses the rule-based
approach.

omRule
Chooses rule-based optimization (RBO). Any
other value causes the optimizer to choose cost-
based optimization (CBO). The rule-based
optimizer is the archaic optimizer mode from the
earliest releases of Oracle Database.

Universal Data Access Components130

© 2013 Enter your company name

Schema Use the Schema property to change the current schema of
the session to the specified schema. This setting offers a
convenient way to perform operations on objects in a
schema other than that of the current user without having
to qualify the objects with the schema name. This setting
changes the current schema, but it does not change the
session user or the current user, nor does it give you any
additional system or object privileges for the session.
If TUniConnection.Connected is True, read this property to
receive the name of the current schema.

StatementCache When set to True, the provider caches statement handles.

StatementCacheSiz
e

Statement handle cache size.

ThreadSafety Allows to use the OCI in multi-threaded environment. The
ThreadSafety option must be True before any non blocking
fetch of rows or SQL statement execution takes place.

UseUnicode Enables or disables Unicode support. Affects on character
data fetched from the server. When set to True all
character data is stored as WideStrings, and TStringField is
replaced with TWideStringFiled. Supported starting with
Oracle 8.

TUniSQL

Option name Description

StatementCache When set to True, the provider caches statement handles.

TemporaryLobUpda
te

If True, a temporary LOB is used to write input and input/
output LOB parameter into database when executing
dataset's SQL statements.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

AutoClose The OCI cursor will be closed after fetching all rows. Allows
to reduce the number of opened cursors on the server.

CacheLobs If True (the default value), then local memory buffer is
allocated to hold a copy of the Lob content. See notes
below for further details. If this option is set to False, it is
highly recommended to set DeferredLobRead option to
True. Otherwise, LOB values are fetched to the dataset,
and it can result in performance loss.

DeferredLobRead If True, all Oracle 8 Lob values are only fetched when they
are explicitly requested. Otherwise entire record set with
any Lob values is returned when dataset is opened.
Whether Lob values are cached locally to be reused later or
not is controlled by the CacheLobs option.

ExtendedFieldsInfo If True, an additional query is performed, to get
information about returned fields and the tables they
belong to. This helps to generate correct updating SQL
statements but may result in performance decrease. The
default value is False.

Provider-Specific Notes 131

© 2013 Enter your company name

FetchAll If True, all records of the query are requested from
database server when the dataset is being opened. If False,
records are retrieved when a data-aware component or a
program requests it. The default value is False.

FieldsAsString If True, all non-BLOB fields are treated as being of string
datatype.

KeySequence Use the KeySequence property to specify the name of a
sequence that will be used to fill in a key field after a new
record is inserted or posted to the database.

RawAsString If True, all RAW fields are treated as being of string
datatype, e.g. represented as hexadecimal string.

ScrollableCursor If True, TUniDataSet does not cache data on the client side
but uses scrollable server cursor (available since Oracle 9
only). This option can be used to reduce memory usage,
because dataset stores only current fetched block. Unlike
the UniDirectional option ScrollableCursor allows
bidirectional dataset navigation. Note that scrollable cursor
is read-only by its nature.

SequenceMode Set the SequenceMode property to specify which method is
used internally to generate sequenced field.
The following values are allowed for this property:

smInsert
New record is inserted into the dataset with the first
key field populated with a sequenced value. Application
may modify this field before posting the record to the
database.

smPost
Database server populates key field with a sequenced
value when application posts the record to the
database. Any value put into key field before post will
be overwritten.

StatementCache When set to True, the provider caches statement handles.

TemporaryLobUpda
te

If True, temporary LOB is used to write input and input/
output LOB parameter into database when executing
dataset's SQL statements.

TUniScript

The TUniScript component has no Oracle-specific options.

TUniLoader

Option name Description

DirectPath If True, data are loaded using the Oracle Direct Path Load
interface. If False, data are loaded by executing an INSERT
statement.

TUniLoader has the following limitations when Oracle Direct Path Load is used:
 triggers are not supported
 check constraints are not supported
 referential integrity constraints are not supported
 clustered tables are not supported

Universal Data Access Components132

© 2013 Enter your company name

 loading of remote objects is not supported
 user-defined types are not supported
 LOBs must be specified after all scalar columns
 LONGs must be specified last
 You cannot use TUniLoader in a threaded OCI environment with Oracle client

8.17 or lower.

TUniDump

The TUniDump component has no Oracle-specific options.

Oracle-specific notes

This chapter describes several special cases of using Oracle data provider.

Connecting in Direct mode

By default, Oracle provider works with the server through Oracle Call Interface
(Client mode). However, working through OCI requires Oracle client software to be
installed on target workstations. This is inconvenient and causes additional
installation and administration expenses. Furthermore, there are some situations in
which installation of Oracle client is not advisable or may even be impossible. To
overcome these problems, the Oracle provider includes an option to connect to
Oracle directly over the network using the TCP/IP protocol (Direct mode).
Connecting in Direct mode does not require Oracle client software to be installed on
target machines. The only requirement for running an ODAC-based application that
uses the Direct mode is that the operating system must support the TCP/IP
protocol.

To connect to an Oracle server in Direct mode, set the
Direct

specific option of your TUniConnection object to True, and fill the TUniConnection.
Server
property with a string that contains the host address of the database server, port
number,
and the Oracle System Identifier (SID) or the Oracle Service Name in the following
format: Host:Port:SID or Host:Port:sid=SID or Host:Port:sn=ServiceName.

Note:
 If
sid
 or
sn
 aren't set then
SID
 is used by default.
If
SID
 and
Service Name
 are equal then
TOraSession.Server

Provider-Specific Notes 133

© 2013 Enter your company name

 property can be set using
SID
 or
Service Name
.

Note that the syntax used to set up the Server property is different in Direct mode
and in Client mode. In Client mode, the Server property must be set to the TNS
name of the Oracle server.

To return to working through OCI, just set the Direct specific option to False and fill
the Server property with the TNS name of your server.

Applications that use Client mode and those that use Direct mode have similar size
and performance. The security of using the Direct mode is the same as using Client
without Oracle Advanced Security. However, Direct mode has certain limitations:

 Connect using the TCP/IP network protocol only.
 Some types are not available, like OBJECT, ARRAY, REF, XML, BINARY_DOUBLE,

BINARY_FLOAT.
 Certain problems may occur when using firewalls.
 NLS conversion on the client side is not supported.
 Transparent Application Failover is not supported.
 Statement caching is not available.
 OS authentication and changing expired passwords features are not available.
 The DES authentication is used.
 Oracle Advanced Security is not supported.
 We do not guarantee stability of multithreaded applications. It is highly

recommended to use the separate TUniConnection component for each thread
when using UniDAC from different threads.

Please note that we do not guarantee Direct mode compatibility with all Oracle
servers and in every network. We have tested Direct mode for all versions of Oracle
servers for Windows on a local network. Other platforms may cause some
incompatibility issues.

© 1997-2013 Devart. All Rights Reserved.

15.12 UniDAC and SQLite

This article provides a brief overview of the SQLite data access provider for UniDAC,
describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 SQLite-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

 Encryption

Universal Data Access Components134

© 2013 Enter your company name

 Collation

Overview

The main features of the SQLite data access provider are:
 High performance
 Easy deployment
 Comprehensive support for the latest versions of SQLite

The full list of SQLite provider features can be found at the UniDAC product page.
Both Professional and Trial Edition of UniDAC include the SQLite provider. Standard
Edition of UniDAC does not include the SQLite provider.

Compatibility

SQLite provider supports SQLite 3.

Requirements

Applications that use the SQLite provider require SQLite client library (sqlite3.dll).
The SQLite provider dynamically loads SQLite client DLL available on user systems.
To locate DLL you can set the ClientLibrary specific option of TUniConnection with
the path to the client library. By default the SQLite provider searches a client library
in directories specified in the PATH environment variable.

Deployment

To deploy Win32 applications built with run-time packages, it is required to deploy
the liteproviderXX.bpl file.

To deploy .NET applications, it is required to deploy the Devart.UniDac.SQLite.dll
file.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

SQLite-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune behaviour for each server individually. For
thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc, TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a sting list. Therefore you can use the following syntax to assign
an option value:

 UniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

http://www.devart.com/unidac/features.html

Provider-Specific Notes 135

© 2013 Enter your company name

TUniConnection

Option name Description

ASCIIDataBase Enables or disables ASCII support. The default value is
False.
Note:For this option usage set the UseUnicode option to
false.

BusyTimeout Use the ClientLibrary option to set or get the timeout of
waiting for locked resource (database or table). If resource
is not unlocked during the time specified in BusyTimeout,
then SQlite returns the SQLITE_BUSY error. Default value
of this option is 0.

ClientLibrary Use the ClientLibrary option to set or get the client library
location.

DateFormat Defines the format for storing dates in the database. If it is
not specified, the default yyyy-mm-dd format will be used.

DefaultCollations Enables or disables automatic default collations
registration on connection establishing.
List of available default collations:
 UniNoCase - allows to compare unicode strings case-

insensitively.

EnableSharedCache Enables or disables the Shared-Cache mode for SQLite
database. Default value of this option is False.

ExtendedFieldsInfo If True, the driver performs additional queries to the
database when opening a dataset. These queries return
information about which fields of the dataset are required
or autoincrement. Set this option to True, if you need the
Required property of fields be set automatically.

EncryptionKey This property is used for password input and for working
with encrypted database. Password can be set or changed
using EncryptDatabase method.

ForegnKeys Enables or disables the enforcement of foreign key
constraints. Foreign key constraints are disabled by
default in SQLite, so this option can be used to force
enabling or disabling them by the application.
Default value of this option is True.

ForceCreateDataba
se

Used to force TLiteConnection to create a new database
before opening a connection, if the database does not
exist.

ReadUncommitted Enables or disables Read-Uncommitted isolation mode. A
database connection in read-uncommitted mode does not
attempt to obtain read-locks before reading from database
tables as described above. This can lead to inconsistent
query results if another database connection modifies a
table while it is being read, but it also means that a read-
transaction opened by a connection in read-uncommitted
mode can neither block nor be blocked by any other
connection. Default value of this option is False.

TimeFormat Defines the format for storing time in the database. If it is
not specified, the default hh24:mi:ss format will be used.

Universal Data Access Components136

© 2013 Enter your company name

UseUnicode Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character
data is stored as WideStrings, and TStringField is replaced
by TWideStringFiled.

TUniSQL

The TUniScript component has no SQLite-specific options.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

FetchAll If True, all records of a query are requested from database
server when the dataset is being opened. If False, records
are retrieved when a data-aware component or a program
requests it. The default value is False.

TUniScript

The TUniScript component has no SQLite-specific options.

TUniLoader

The TUniScript component has no SQLite-specific options.

TUniDump

The TUniScript component has no SQLite-specific options.

©

 1997-2013 Devart. All Rights Reserved.

15.13 UniDAC and SQL Server

This article provides a brief overview of SQL Server data access provider for
UniDAC, describes some useful features and helps you get started quickly.
 Overview
 Compatibility
 Requirements
 Deployment
 SQL Server-specific options

o TUniConnection

o TUniSQL

o TUniQuery, TUniTable, TUniStoredProc

o TUniScript

o TUniLoader

o TUniDump

Overview

SQL Server data access provider is based on the SQL Server Data Access
Components (SDAC) library, which is one of the best known Delphi data access

http://www.devart.com/sdac/

Provider-Specific Notes 137

© 2013 Enter your company name

solutions for SQL Server. The main features of SQL Server data access provider are:
 Access to the SQL Server through the lowest documented protocol level (OLE

DB)
 High performance
 Easy deployment
 Comprehensive support for the latest versions of SQL Server

The full list of SQL Server provider features can be found at the UniDAC product
page.
Both Professional and Trial Edition of UniDAC include the SQL Server provider. For
Standard Edition of UniDAC, the SQL Server provider can be installed with SDAC.

Compatibility

SQL Server provider supports:
 Servers: SQL Server 2005 (including Compact and Express editions), SQL Server

2000, SQL Server 7, and MSDE.
 Clients: SQL OLE DB and SQL Native Client.

Requirements

SQL Server provider requires OLE DB or SQL Native Client installed on workstation.
In the current versions of Microsoft Windows, since Windows 2000, OLE DB is
already included as a standard package. But it's highly recommended to download
the latest version (higher than 2.5) of Microsoft Data Access Components (MDAC) or
SQL Native Provider.
Some features of SQL Server 2005 are available only with SQL Native Provider.
If you are working with SQL Server Compact Edition, you should have it installed.
You can download SQL Server Compact Edition from the site of Microsoft.

Deployment

To deploy Win32 applications built with run-time packages it is not required to
deploy the sdacXX.bpl file with UniDAC Professional Edition. But it is necessary to
deploy the sdacXX.bpl file with Standard Edition of UniDAC. This happens because
in the UniDAC Professional Edition functionality of sdacXX.bpl is included in the
correspondent msproviderXX.bpl, when in Standard Edition of UniDAC,
msproviderXX.bpl is just a wrapper on sdacXX.bpl.
The same concerns Devart.Sdac.dll and Devart.UniDac.MSSQL.dll assemblies in .
NET applications. Devart.Sdac.dll is used only in applications built with UniDAC
Standard Edition. In UniDAC Professional Edition, the Devart.UniDac.MSSQL.dll
assembly includes functionality of Devart.Sdac.dll.
For more information about deployment of UniDAC-based applications, please, refer
to the common Deployment topic.

SQL Server-specific options

Though UniDAC is components that provide unified interface to work with different
database servers, it also lets you tune the behaviour for each server individually.
For thin setup of a certain database server, UniDAC provides server-specific options.
These options can be applied to such components as TUniConnection, TUniQuery,
TUniTable, TUniStoredProc, TUniSQL, TUniScript via their SpecificOptions property.
SpecificOptions is a string list. Therefore you can use the following syntax to assign
an option value:

UniConnection.SpecificOptions.Values['ApplicationName'] := 'My application';

http://www.devart.com/unidac/features.html
http://www.devart.com/unidac/features.html

Universal Data Access Components138

© 2013 Enter your company name

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApplicationName The name of a client application. The default value is the
name of the executable file of your application.

Authentication Use the Authentication property to specify authentication
service used by the database server to identify a user. The
Authentication property accepts one of the following
values:

auWindows
Uses Windows NT/2000/XP integrated security, or
"SSPI" (Security Support Provider Interface).
Username, Password and LoginPrompt properties are
ignored.

auServer (default)
An alternative way of identifying users by database
server. To establish a connection valid Username and
Password either hardcoded into application or provided
in server login prompt fields are required.

AutoTranslate When set to True, character strings sent between the client
and server are translated by converting through Unicode to
minimize problems in matching extended characters
between the code pages on the client and the server.

CompactAutoShrin
kThreshold

Specifies the amount of free space in the database file
before automatic shrink will start. Measured in percents.
The default value is 60.

CompactDefaultLoc
kEscalation

Specifies how many locks should be performed before
trying escalation from row to page or from page to table.
The default value is 100.

CompactDefaultLoc
kTimeout

Specifies how much time a transaction will wait for a lock.
The default value is 2000.

Compact
FlushInterval

Specifies the interval at which committed transactions are
flushed to disk. Measured in seconds. The default value is
10.

Provider-Specific Notes 139

© 2013 Enter your company name

CompactInitMode Use this property to specify the file mode that will be used
to open the database file. The InitMode property accepts
one of the following values:

imExclusive
Database file is opened for exclusive use. This mode
prevents others from opening this database file.

imReadOnly
Database file is opened for reading. All operations that
write to database are unallowable.

imReadWrite (default)
Both read and write operations are allowed.

imShareRead
Opens a database file preventing others from opening
the same file in the read mode.

CompaLockEscalati
on

Specifies how many locks should be performed before
trying escalation from row to page or from page to table.
Measured in milliseconds. The default value is 100.

CompactLockTimeo
ut

Specifies how much time a transaction will wait for a lock.
Measured in milliseconds. The default value is 2000.

CompactMaxBuffer
Size

Specifies how much memory SQL Server Compact Edition
can use before flushing changes to disc. Measured in
kilobytes. The default value is 640.

CompactMaxDatab
aseSize

Specified maximum size of the main database file.
Measured in megabytes. The default value is 128.

CompactTempFileD
irectory

Specifies the temp file directory. If this option is not
assigned, the current database is used as a temporary
database.

CompactTempFileM
axSize

Specified maximum size of the temporary database file.
Measured in megabytes. The default value is 128.

CompactTransactio
nCommitMode

Specifies in what way the buffer pool will be flushed on
transaction commit. The following two values are allowed:
cmAsynchCommit

Asynchronous commit to disk.
cmSynchCommit (default)

Synchronous commit to disk.

Universal Data Access Components140

© 2013 Enter your company name

CompactVersion Specifies which version of SQL Server Compact Edition will
be used.

cvAuto (default)

Version of SQL Server Compact Edition will be chosen
automatically depending on database version. If
database is not provided, the higher available server
version will be chosen.

cv30

Uses SQL Server Compact Edition Version 3.0 or 3.1.

cv35

Uses SQL Server Compact Edition Version 3.5.

ConnectionTimeout Use ConnectionTimeout to specify the amount of time, in
seconds, that can expire before an attempt to consider a
connection unsuccessful. The default value is 15 seconds.

Encrypt Specifies if data should be encrypted before sending it over
the network. The default value is False.

FailoverPartner Specifies the SQL Server name to which SQL Native Client
will reconnect when a failover of the principal SQL Server
occurs. This option is supported only for SQL Server 2005
using SQL Native Client as an OLE DB provider.

InitialFileName Specifies the name of the main database file. This database
will be default database for the connection. SQL Server
attaches the database to the server if it has not been
attached to the server yet. So, this property can be used to
connect to the database that has not been attached to the
server yet.

Language A SQL Server language name. Identifies the language used
for system message selection and formatting. The language
must be installed on the computer running an instance of
SQL Server otherwise the connection will fail.

MultipleActiveResul
tSets

Enables support for SQL Server 2005 Multiple Active Result
Sets (MARS) technology. It allows applications to have
more than one pending request per connection, and in
particular, to have more than one active default result set
per connection. Current session is not blocked when using
FetchAll = False, and it is not necessary for OLE DB to
create additional sessions for any query executing. MARS is
only supported by SQL Server 2005 with using SQL Native
Client as OLE DB provider.

NetworkLibrary The name of the Net-Library (DLL) used to communicate
with an instance of SQL Server. The name should not
include the path or the .dll file name extension. The default
name is provided by the SQL Server Client Network Utility.

Provider-Specific Notes 141

© 2013 Enter your company name

OLEDBProvider This property allows you to specify a provider from the list
of supported providers. The default value of this property is
prAuto. In this case a provider of the most recent version is
used. Some features added to SQL Server 2005 require
the SQL Native Client (prNativeClient) provider to be used.
If chosen provider is not installed, an exception is raised.
This property can have the following values:

prAuto (default)

The default value. If the SQL Native Client provider is
found, equals to prNativeClient, otherwise equals to
prSQL.

prSQL
Uses the provider preinstalled with Windows that has
limited functionality.

prNativeClient
Uses the SQL Native Client. It should be installed on
the computer to use this Provider value. This provider
offers the maximum functionality set.

prCompact
SQL Server 2005 Compact Edition provider.

PacketSize Network packet size in bytes. The packet size property
value must be between 512 and 32,767. The default
network packet size is 4,096.

PersistSecurityInfo The data source object is allowed to persist sensitive
authentication information such as password along with
other authentication information.

Universal Data Access Components142

© 2013 Enter your company name

QuotedIdentifier Causes Microsoft® SQL Server™ to follow the SQL-92 rules
regarding quotation mark delimiting identifiers and literal
strings. Identifiers delimited by double quotation marks can
be either Transact-SQL reserved keywords or can contain
characters not usually allowed by the Transact-SQL syntax
rules for identifiers.
QuotedIdentifier must be True when creating or
manipulating indexes on computed columns or indexed
views. If QuotedIdentifier is False, CREATE, UPDATE,
INSERT, and DELETE statements on tables with indexes on
computed columns or indexed views will fail.

True (default)
Identifiers can be delimited by double quotation marks,
and literals must be delimited by single quotation
marks.
All strings delimited by double quotation marks are
interpreted as object identifiers. Therefore, quoted
identifiers do not have to follow the Transact-SQL rules
for identifiers. They can be reserved keywords and can
include characters not usually allowed in Transact-SQL
identifiers. Double quotation marks cannot be used to
delimit literal string expressions; single quotation marks
must be used to enclose literal strings. If a single
quotation mark (') is a part of the literal string, it can be
represented by two single quotation marks (").
QuotedIdentifier must be True when reserved keywords
are used for object names in the database.

False (BDE compatibility)
Identifiers cannot be quoted and must follow all
Transact-SQL rules for identifiers. Literals can be
delimited by either single or double quotation marks. If
a literal string is delimited by double quotation marks,
the string can contain embedded single quotation
marks, such as apostrophes.

TrustServerCertific
ate

Lets enabling traffic encryption without validation. The
default value is False. This option is only supported by SQL
Server 2005 with using SQL Native Client as OLE DB
provider.

WorkstationID A string identifying the workstation. The default value is
the name of your machine.

TUniSQL

Option name Description

CommandTimeout Use CommandTimeout to specify the amount of time that
expires before an attempt to execute a command is
considered unsuccessful. Is measured in seconds.
If a command is successfully executed prior to the
expiration of the seconds specified, CommandTimeout has
no effect.
The default value is 0 (infinite).

Provider-Specific Notes 143

© 2013 Enter your company name

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CheckRowVersion Determines whether the dataset checks for rows
modifications made by another user on automatic
generation of SQL statement for update or delete data. If
CheckRowVersion property is False and DataSet has
keyfields, the WHERE clause of SQL statement is generated
basing on these keyfields. If there is no primary key and no
Identity field, then all non-BLOB fields will take part in
generating SQL statements. If CheckRowVersion is True
and DataSet has TIMESTAMP field, only this field is
included into WHERE clause of generated SQL statement.
Otherwise, all non BLOB fields are included. All mentioned
fields refer to the current UpdatingTable. The default value
is False. The CheckRowVersion option requires enabled
DMLRefresh.

CommandTimeout Use CommandTimeout to specify the amount of time that
expires before an attempt to execute a command is
considered unsuccessful. Is measured in seconds.
If a command is successfully executed prior to the
expiration of the seconds specified, CommandTimeout has
no effect.
The default value is 0 (infinite).

CursorUpdate Specifies what way data updates reflect on database when
modifying dataset by using server cursors ctKeySet and
ctDynamic. If the CursorUpdate property is True, all
dataset modifications pass to database by server cursors. If
the CursorUpdate property is False, all dataset updates
pass to server by SQL statements generated automatically
or specified in SQLUpdate, SQLInsert or SQLDelete. The
default value is True.

FetchAll If True, all records of the query are requested from the
database server when the dataset is being opened. If False,
records are retrieved when a data-aware component or a
program requests it. The default value is True.

QueryIdentity Specifies whether to request Identity field value, if such
exists, on execution Insert or Append method. If to refuse
of getting Identity you can have an impact on performance
of Insert or Append by about 20%. Affects only for
ctDefaultResultSet cursor. If you are inserting value into
SQL_VARIANT field, and QueryIdentity is True then an
error is raised. The default value is True.

Universal Data Access Components144

© 2013 Enter your company name

UniqueRecords Use UniqueRecords to specify whether to query additional
key fields from the server. If UniqueRecords is False,
keyfields are not queried from the server when they are not
included in the query explicitly. For example, the result of
the query execution "SELECT ShipName FROM Orders"
holds the only field ShipName. When used with ReadOnly
property set to True, UniqueRecords option gives
insignificant advantage of performance. But in this case
SQLRefresh will be generated in simplified way. If
UniqueRecord is True, keyfields needed for complete
automatic generation of SQLInsert, SQLUpdate, SQLDelete
or SQLRefresh statements are queried from the server
implicitly. For example, the result of query execution
"SELECT ShipName FROM Orders" holds at least two fields
ShipName and OrderID. The default value is False. Has
effect only for ctDefaultResultSet cursor.

TUniScript

The TUniScript component has no SQL Server-specific options.

TUniLoader

Option name Description

KeepIdentity Use the KeepIdentity property to specify in what way
IDENTITY column values must be handled. If KeepIdentity
is set to False, IDENTITY columns will be initialized by the
server. Any value assigned to such column in your
application is ignored. If KeepIdentity is set to True, the
IDENTITY property will not be available for all IDENTITY
fields accepting NULL. So in this case unique values should
be generated and assigned by the client application. The
default value of the KeepIdentity property is False.

KeepNulls If this option is set to False, each NULL value inserted into
a field with a DEFAULT constraint will be replaced with the
default value. If KeepNulls is set to True, NULL values
inserted into a field with a DEFAULT constraint will not be
replaced with the default values. The default value of the
KeepNulls property is False.

RowsPerBatch Use the RowsPerBatch property to specify the number of
rows to load in a single batch. Server optimizes loading
according to this value. The default value of this option is
Unknown.

KilobytesPerBatch Use the KilobytesPerBatch option to specify the size of data
in kilobytes to load in a single batch. The default value of
this option is Unknown.

LockTable Use the LockTable property to specify if the table-level lock
is performed while loading is in progress. Setting this
option to True should improve the performance greatly. If
this option is set to False, the locking behaviour is
determined by the table option. The default value of the
LockTable option is False.

Provider-Specific Notes 145

© 2013 Enter your company name

CheckConstraints Use the CheckConstraints property to specify if the table
constraints are checked during loading. If this option is set
to False, the table constraints are not checked. The default
value of the CheckConstraints option is False.

TUniDump

Option name Description

IdentityInsert Use the IdentityInsert property to add SET
IDENTITY_INSERT TableName ON at the beginning of the
script and SET IDENTITY_INSERT TableName OFF at the
end of the script. The first line allows explicit values to be
inserted into the identity column of a table and INSERT
statements are generated with IDENTITY field values.
Otherwise the IDENTITY field will not be included to the
INSERT statements. SET IDENTITY_INSERT will not be
added while the option is ON if the table does not have a
field identified as IDENTITY or there are no records in the
table.

©

 1997-2013 Devart. All Rights Reserved.

15.14 Database Specific Aspects of 64-bit Development

Oracle Connectivity Aspects

OCI mode:
Since at design-time Rad Studio XE 2 works only with x32 libraries and if a
connection to the server is needed at design-time, you need to install Oracle Client
(x32) regardless of the intended platform. (If the x32 client is needed only for
development, you can use only Oracle Instant Client). By default, UniDAC use
DEFAULT of Oracle Client, that is why, if a x64 client is the default client at design-
time, you need to specify a x32 client. To prevent conflicts between different
versions of Oracle Client on the end-user side, you can leave the Home property
empty, in this case, the default client will be used.
DIRECT mode:
Since there is no need to install Oracle Client for the DIRECT mode, the
development of applications for the x64 platform does not differ from the
development of application for Windows x86.

SQL Server Connectivity Aspects

If you are working in the Direct mode or developing a 32-bit application only, then
the development process will not be different for you, except some peculiarities of
each particular platform. But if you are developing a 64-bit application, you have to
be aware of specifics of working with client libraries at design-time and run-time. To
connect to a SQL Server database at design-time, you must have its 32-bit client

Universal Data Access Components146

© 2013 Enter your company name

library. You have to place it to the C:\Windows\SysWOW64 directory. This
requirement flows out from the fact that RAD Studio XE2 is a 32-bit application and
it cannot load 64-bit libraries at design-time. To work with a SQL Server database
at run-time (64-bit application), you must have the 64-bit client library placed to
the C:\Windows\System32 directory.

MySQL Connectivity Aspects

Client mode:
If you are developing a 64-bit application, you have to be aware of specifics of
working with client libraries at design-time and run-time. To connect to a MySQL
database at design-time, you must have its 32-bit client library. You have to place it
to the C:\Windows\SysWOW64 directory. This requirement flows out from the fact
that RAD Studio XE2 is a 32-bit application and it cannot load 64-bit libraries at
design-time. To work with a MySQL database in run-time (64-bit application), you
must have the 64-bit client library placed to the C:\Windows\System32 directory.
DIRECT mode:
Since there is no need to install client library for the DIRECT mode, the specifics of
developing applications that use UniDAC as data access components, depends
exclusively on peculiarities of each target platform.

InterBase and FireBird Connectivity Aspects

To work with InterBase and Firebird, UniDAC uses theirs client libraries (gds32.dll
and fbclient.dll correspondingly). If you are developing a 32-bit application, then
the development process will not be different for you, except some peculiarities of
each particular platform. But if you are developing a 64-bit application, you have to
be aware of specifics of working with client libraries at design-time and run-time. To
connect to an InterBase or Firebird database at design-time, you must have its 32-
bit client library. You have to place it to the C:\Windows\SysWOW64 directory. This
requirement flows out from the fact that RAD Studio XE2 is a 32-bit application and
it cannot load 64-bit libraries in design-time. To work with an InterBase or Firebird
database at run-time (64-bit application), you must have the 64-bit client library
placed to the C:\Windows\System32 directory.

PostgreSQL Connectivity Aspects

Since UniDAC does not require that the PostgreSQL client be installed to work with
the database, the development of applications for the x64 platform does not differ
from the development of application for Windows x86.

SQLite Connectivity Aspects

Presently, developers of SQLite do not provide a ready driver for x64 platforms, that
is why, for x64 applications you need to manually compile the sqlite library (for
example, in MS VisualStudio). By default, the sqlite libraries must be placed to the
following directories: for Win32 you need only the x32 library placed into C:
\Windows\System32, and for windows x64, the x64 library should be placed to C:
\Windows\System32 and the x32 library to C:\Windows\SysWow64. >If the
libraries are located as described above, you don't have to make additional settings
for different target platforms when developing applications to work with the SQLite
database; the required libraries will be correctly located both at design-time and
run-time. Besides, when delivering your application to its end-users, you can supply
the required library (x32 or x64) together with the application by placing it to the
folder that contains the executable file. (If at design-time you don't need to connect

Provider-Specific Notes 147

© 2013 Enter your company name

to the database, then the x32 library is not needed either.)
If the libraries are located in different directories, then at design-time you will have
to specify the path to the x32 library in the ClientLibrary option, and when building
the final application for the x64 platform, you will have to specify the path to the
x64 library.

MS Access Connectivity Aspects

When developing cross-platform application to work with the MS Access database,
you should remember that it is impossible to install two (32- and 64-bit) drivers on
the same system (Microsoft limitation). That is why, if you need to connect to the
database at design-time, the 32-bit driver must be installed on the development
computer, since Rad Studio XE 2 uses x32 libraries at design-time. If no such
connection is needed, you can install the x64 MS Access driver. All the other aspects
of x64 and x32 development are identical.

Other ODBC Connectivity Aspects

As regards all other providers using ODBC, for information on drivers for different
platforms and specifics contact their developers.

© 1997-2013 Devart. All Rights Reserved.

16 Reference

This page shortly describes units that exist in UniDAC.

Units

Unit Name Description

CRAccess This unit contains base
classes for accessing
databases.

CRBatchMove This unit contains
implementation of the
TCRBatchMove component.

CRDataTypeMap This unit contains base
classes for Data Type
Mapping

CREncryption This unit contains base
classes for data encryption.

CRVio This unit contains classes,
used for establishing HTTP
connections.

DAAlerter This unit contains the base
class for the TUniAlerter
component.

DADump This unit contains the base
class for the TUniDump
component.

Universal Data Access Components148

© 2013 Enter your company name

DALoader This unit contains the base
class for the TUniLoader
component.

DAScript This unit contains the base
class for the TUniScript
component.

DASQLMonitor This unit contains the base
class for the TUniSQLMonitor
component.

DBAccess This unit contains base
classes for most of the
components.

Devart.Dac.DataAdapter This unit contains
implementation of the
DADataAdapter class.

Devart.UniDac.DataAdapter This unit contains
implementation of the
UniDataAdapter class.

LiteCollation This unit contains types for
registering user-defined
collations.

LiteFunction This unit contains types for
registering user-defined
functions.

MemData This unit contains classes for
storing data in memory.

MemDS This unit contains
implementation of the
TMemDataSet class.

MemUtils This unit contains auxiliary
procedures and functions
used in the DAC code.

SQLiteUniProvider This unit contains the
TLiteUtils class, that allows
to use features of SQLite
database.

Uni This unit contains main
components of UniDAC.

UniAlerter This unit contains the
implementation of the
TUniAlerter component.

UniDacVcl This unit contains the visual
constituent of UniDAC.

UniDump This unit contains the
implementation of the
TUniDump component.

UniLoader This unit contains the
implementation of the
TUniLoader component.

Reference 149

© 2013 Enter your company name

UniProvider This unit contains the
TUniProvider class for linking
the server-specific providers
to application.

UniScript This unit contains the
implementation of the
TUniScript component.

UniSQLMonitor This unit contains the
implementation of the
TUniSQLMonitor component.

VirtualTable This unit contains
implementation of the
TVirtualTable component.

© 1997-2013 Devart. All Rights Reserved.

16.1 CRAccess

This unit contains base classes for accessing databases.

Classes

Name Description

TCRCursor A base class for classes that
work with database cursors.

Types

Name Description

TBeforeFetchProc This type is used for the
TCustomDADataSet.
BeforeFetch event.

Enumerations

Name Description

TCRIsolationLevel Specifies how to handle
transactions containing
database modifications.

TCRTransactionAction Specifies the transaction
behaviour when it is
destroyed while being
active, or when one of its
connections is closed with
the active transaction.

© 1997-2013 Devart. All Rights Reserved.

16.1.1 Classes

Classes in the CRAccess unit.

Classes

Universal Data Access Components150

© 2013 Enter your company name

Name Description

TCRCursor A base class for classes that
work with database cursors.

© 1997-2013 Devart. All Rights Reserved.

16.1.1.1 TCRCursor Class

A base class for classes that work with database cursors.
For a list of all members of this type, see TCRCursor members.

Unit

CRAccess

Syntax

TCRCursor = class(TSharedObject);

Remarks

TCRCursor is a base class for classes that work with database cursors.

Inheritance Hierarchy

TSharedObject
 TCRCursor

© 1997-2013 Devart. All Rights Reserved.

16.1.1.1.1 Members

TCRCursor class overview.

Properties

Name Description

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

© 1997-2013 Devart. All Rights Reserved.

Reference 151

© 2013 Enter your company name

16.1.2 Types

Types in the CRAccess unit.

Types

Name Description

TBeforeFetchProc This type is used for the
TCustomDADataSet.
BeforeFetch event.

© 1997-2013 Devart. All Rights Reserved.

16.1.2.1 TBeforeFetchProc Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

CRAccess

Syntax

TBeforeFetchProc = procedure (var Cancel: boolean) of object;
Parameters

Cancel
True, if the current fetch operation should be aborted.

© 1997-2013 Devart. All Rights Reserved.

16.1.3 Enumerations

Enumerations in the CRAccess unit.

Enumerations

Name Description

TCRIsolationLevel Specifies how to handle
transactions containing
database modifications.

TCRTransactionAction Specifies the transaction
behaviour when it is
destroyed while being
active, or when one of its
connections is closed with
the active transaction.

© 1997-2013 Devart. All Rights Reserved.

16.1.3.1 TCRIsolationLevel Enumeration

Specifies how to handle transactions containing database modifications.

Unit

CRAccess

Universal Data Access Components152

© 2013 Enter your company name

Syntax

TCRIsolationLevel = (ilReadCommitted);

Values

Value Meaning

ilReadCommitted The default transaction behavior. If the transaction
contains DML that requires row locks held by another
transaction, then the DML statement waits until the row
locks are released.

© 1997-2013 Devart. All Rights Reserved.

16.1.3.2 TCRTransactionAction Enumeration

Specifies the transaction behaviour when it is destroyed while being active, or when
one of its connections is closed with the active transaction.

Unit

CRAccess

Syntax

TCRTransactionAction = (taCommit, taRollback);

Values

Value Meaning

taCommit Transaction is committed.

taRollback Transaction is rolled back.

© 1997-2013 Devart. All Rights Reserved.

16.2 CRBatchMove

This unit contains implementation of the TCRBatchMove component.

Classes

Name Description

TCRBatchMove Transfers records between
datasets.

Types

Name Description

TCRBatchMoveProgressEvent This type is used for the
TCRBatchMove.
OnBatchMoveProgress
event.

Enumerations

Name Description

Reference 153

© 2013 Enter your company name

TCRBatchMode Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

TCRFieldMappingMode Used to specify the way
fields of the destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings list
is empty.

© 1997-2013 Devart. All Rights Reserved.

16.2.1 Classes

Classes in the CRBatchMove unit.

Classes

Name Description

TCRBatchMove Transfers records between
datasets.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1 TCRBatchMove Class

Transfers records between datasets.
For a list of all members of this type, see TCRBatchMove members.

Unit

CRBatchMove

Syntax

TCRBatchMove = class(TComponent);

Remarks

The TCRBatchMove component transfers records between datasets. Use it to copy
dataset records to another dataset or to delete datasets records that match records
in another dataset. The TCRBatchMove.Mode property determines the desired
operation type, the TCRBatchMove.Source and TCRBatchMove.Destination
properties indicate corresponding datasets.
Note: A TCRBatchMove component is added to the Data Access page of the
component palette, not to the server Access page.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.1 Members

TCRBatchMove class overview.

Properties

Universal Data Access Components154

© 2013 Enter your company name

Name Description

AbortOnKeyViol Used to specify whether the
batch operation should be
terminated immediately
after key or integrity
violation.

AbortOnProblem Used to specify whether the
batch operation should be
terminated immediately
when it is necessary to
truncate data to make it fit
the specified Destination.

ChangedCount Used to get the number of
records changed in the
destination dataset.

CommitCount Used to set the number of
records to be batch moved
before commit occurs.

Destination Used to specify the
destination dataset for the
batch operation.

FieldMappingMode Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings list
is empty.

KeyViolCount Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.

Mappings Used to set field matching
between source and
destination datasets for the
batch operation.

Mode Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

MovedCount Used to get the number of
records that were read from
the source dataset during
the batch operation.

ProblemCount Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Reference 155

© 2013 Enter your company name

RecordCount Used to indicate the
maximum number of records
in the source dataset that
will be applied to the
destination dataset.

Source Used to specify the source
dataset for the batch
operation.

Methods

Name Description

Execute Performs the batch
operation.

Events

Name Description

OnBatchMoveProgress Occurs when providing
feedback to the user about
the batch operation in
progress is needed.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2 Properties

Properties of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove
Members topic.

Public

Name Description

ChangedCount Used to get the number of
records changed in the
destination dataset.

KeyViolCount Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.

MovedCount Used to get the number of
records that were read from
the source dataset during
the batch operation.

ProblemCount Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Published

Universal Data Access Components156

© 2013 Enter your company name

Name Description

AbortOnKeyViol Used to specify whether the
batch operation should be
terminated immediately
after key or integrity
violation.

AbortOnProblem Used to specify whether the
batch operation should be
terminated immediately
when it is necessary to
truncate data to make it fit
the specified Destination.

CommitCount Used to set the number of
records to be batch moved
before commit occurs.

Destination Used to specify the
destination dataset for the
batch operation.

FieldMappingMode Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings list
is empty.

Mappings Used to set field matching
between source and
destination datasets for the
batch operation.

Mode Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

RecordCount Used to indicate the
maximum number of records
in the source dataset that
will be applied to the
destination dataset.

Source Used to specify the source
dataset for the batch
operation.

See Also
 TCRBatchMove Class
 TCRBatchMove Class Members

© 1997-2013 Devart. All Rights Reserved.

Reference 157

© 2013 Enter your company name

16.2.1.1.2.1 AbortOnKeyViol Property

Used to specify whether the batch operation should be terminated immediately after
key or integrity violation.

Class

TCRBatchMove

Syntax

property AbortOnKeyViol: boolean default True;

Remarks

Use the AbortOnKeyViol property to specify whether the batch operation is
terminated immediately after key or integrity violation.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.2 AbortOnProblem Property

Used to specify whether the batch operation should be terminated immediately
when it is necessary to truncate data to make it fit the specified Destination.

Class

TCRBatchMove

Syntax

property AbortOnProblem: boolean default True;

Remarks

Use the AbortOnProblem property to specify whether the batch operation is
terminated immediately when it is necessary to truncate data to make it fit the
specified Destination.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.3 ChangedCount Property

Used to get the number of records changed in the destination dataset.

Class

TCRBatchMove

Syntax

property ChangedCount: Longint;

Remarks

Use the ChangedCount property to get the number of records changed in the
destination dataset. It shows the number of records that were updated in the
bmUpdate or bmAppendUpdate mode or were deleted in the bmDelete mode.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components158

© 2013 Enter your company name

16.2.1.1.2.4 CommitCount Property

Used to set the number of records to be batch moved before commit occurs.

Class

TCRBatchMove

Syntax

property CommitCount: integer default 0;

Remarks

Use the CommitCount property to set the number of records to be batch moved
before the commit occurs. If it is set to 0, the operation will be chunked to the
number of records to fit 32 Kb.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.5 Destination Property

Used to specify the destination dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Destination: TDataSet;

Remarks

Specifies the destination dataset for the batch operation.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.6 FieldMappingMode Property

Used to specify the way fields of destination and source datasets will be mapped to
each other if the Mappings list is empty.

Class

TCRBatchMove

Syntax

property FieldMappingMode: TCRFieldMappingMode default
mmFieldIndex;

Remarks

Specifies in what way fields of destination and source datasets will be mapped to
each other if the Mappings list is empty.

© 1997-2013 Devart. All Rights Reserved.

Reference 159

© 2013 Enter your company name

16.2.1.1.2.7 KeyViolCount Property

Used to get the number of records that could not be moved to or from the
destination dataset because of integrity or key violations.

Class

TCRBatchMove

Syntax

property KeyViolCount: Longint;

Remarks

Use the KeyViolCount property to get the number of records that could not be
replaced, added, deleted from the destination dataset because of integrity or key
violations.
If AbortOnKeyViol is True, then KeyViolCount will never exceed one, because the
operation aborts when the integrity or key violation occurs.

See Also

 AbortOnKeyViol

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.8 Mappings Property

Used to set field matching between source and destination datasets for the batch
operation.

Class

TCRBatchMove

Syntax

property Mappings: _TStrings;

Remarks

Use the Mappings property to set field matching between the source and destination
datasets for the batch operation. By default fields matching is based on their
position in the datasets. To map the column ColName in the source dataset to the
column with the same name in the destination dataset, use:
ColName

Example

To map a column named SourceColName in the source dataset to the column
named DestColName in the destination dataset, use:
DestColName=SourceColName

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components160

© 2013 Enter your company name

16.2.1.1.2.9 Mode Property

Used to set the type of the batch operation that will be executed after calling the
Execute method.

Class

TCRBatchMove

Syntax

property Mode: TCRBatchMode default bmAppend;

Remarks

Use the Mode property to set the type of the batch operation that will be executed
after calling the Execute method.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.10 MovedCount Property

Used to get the number of records that were read from the source dataset during
the batch operation.

Class

TCRBatchMove

Syntax

property MovedCount: Longint;

Remarks

Use the MovedCount property to get the number of records that were read from the
source dataset during the batch operation. This number includes records that
caused key or integrity violations or were trimmed.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.11 ProblemCount Property

Used to get the number of records that could not be added to the destination
dataset because of the field type mismatch.

Class

TCRBatchMove

Syntax

property ProblemCount: Longint;

Remarks

Use the ProblemCount property to get the number of records that could not be
added to the destination dataset because of the field type mismatch.
If AbortOnProblem is True, then ProblemCount will never exceed one, because the
operation aborts when the problem occurs.

Reference 161

© 2013 Enter your company name

See Also

 AbortOnProblem

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.12 RecordCount Property

Used to indicate the maximum number of records in the source dataset that will be
applied to the destination dataset.

Class

TCRBatchMove

Syntax

property RecordCount: Longint default 0;

Remarks

Determines the maximum number of records in the source dataset, that will be
applied to the destination dataset. If it is set to 0, all records in the source dataset
will be applied to the destination dataset, starting from the first record. If
RecordCount is greater than 0, up to the RecordCount records are applied to the
destination dataset, starting from the current record in the source dataset. If
RecordCount exceeds the number of records left in the source dataset, batch
operation terminates after reaching last record.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.2.13 Source Property

Used to specify the source dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Source: TDataSet;

Remarks

Specifies the source dataset for the batch operation.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.3 Methods

Methods of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove
Members topic.

Public

Universal Data Access Components162

© 2013 Enter your company name

Name Description

Execute Performs the batch
operation.

See Also
 TCRBatchMove Class
 TCRBatchMove Class Members

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.3.1 Execute Method

Performs the batch operation.

Class

TCRBatchMove

Syntax

procedure Execute;

Remarks

Call the Execute method to perform the batch operation.

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.4 Events

Events of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove
Members topic.

Published

Name Description

OnBatchMoveProgress Occurs when providing
feedback to the user about
the batch operation in
progress is needed.

See Also
 TCRBatchMove Class
 TCRBatchMove Class Members

© 1997-2013 Devart. All Rights Reserved.

16.2.1.1.4.1 OnBatchMoveProgress Event

Occurs when providing feedback to the user about the batch operation in progress is
needed.

Class

TCRBatchMove

Reference 163

© 2013 Enter your company name

Syntax

property OnBatchMoveProgress: TCRBatchMoveProgressEvent;

Remarks

Write the OnBatchMoveProgress event handler to provide feedback to the user
about the batch operation progress.

© 1997-2013 Devart. All Rights Reserved.

16.2.2 Types

Types in the CRBatchMove unit.

Types

Name Description

TCRBatchMoveProgressEvent This type is used for the
TCRBatchMove.
OnBatchMoveProgress
event.

© 1997-2013 Devart. All Rights Reserved.

16.2.2.1 TCRBatchMoveProgressEvent Procedure Reference

This type is used for the TCRBatchMove.OnBatchMoveProgress event.

Unit

CRBatchMove

Syntax

TCRBatchMoveProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

Percent
Percentage of the batch operation progress.

© 1997-2013 Devart. All Rights Reserved.

16.2.3 Enumerations

Enumerations in the CRBatchMove unit.

Enumerations

Name Description

Universal Data Access Components164

© 2013 Enter your company name

TCRBatchMode Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

TCRFieldMappingMode Used to specify the way
fields of the destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings list
is empty.

© 1997-2013 Devart. All Rights Reserved.

16.2.3.1 TCRBatchMode Enumeration

Used to set the type of the batch operation that will be executed after calling the
TCRBatchMove.Execute method.

Unit

CRBatchMove

Syntax

TCRBatchMode = (bmAppend, bmUpdate, bmAppendUpdate, bmDelete);

Values

Value Meaning

bmAppend Appends the records from the source dataset to the
destination dataset. The default mode.

bmAppendUpdate Replaces records in the destination dataset with the
matching records from the source dataset. If there is no
matching record in the destination dataset, the record will
be appended to it.

bmDelete Deletes records from the destination dataset if there are
matching records in the source dataset.

bmUpdate Replaces records in the destination dataset with the
matching records from the source dataset.

© 1997-2013 Devart. All Rights Reserved.

16.2.3.2 TCRFieldMappingMode Enumeration

Used to specify the way fields of the destination and source datasets will be mapped
to each other if the TCRBatchMove.Mappings list is empty.

Unit

CRBatchMove

Syntax

TCRFieldMappingMode = (mmFieldIndex, mmFieldName);

Reference 165

© 2013 Enter your company name

Values

Value Meaning

mmFieldIndex Specifies that the fields of the destination dataset will be
mapped to the fields of the source dataset by field index.

mmFieldName Mapping is performed by field names.

© 1997-2013 Devart. All Rights Reserved.

16.3 CRDataTypeMap

This unit contains base classes for Data Type Mapping

Classes

Name Description

EDataMappingError Occurs when unable to map
data to a specified type.

EDataTypeMappingError Base class for errors
occuring at data mapping

EInvalidDBTypeMapping Occurs when DB field type is
set incorrectly or when
attempting to set Length or
Scale for a type that doesn't
have such properties.

EInvalidFieldTypeMapping Occurs when Delphi field
type is set incorrectly or
when attempting to set
Length or Scale for a type
that doesn't have such
properties.

EUnsupportedDataTypeMapping Occurs when attempting to
register or perform
unsupported data type
mapping.

TMapRule Setting rule for data type
mapping

© 1997-2013 Devart. All Rights Reserved.

16.3.1 Classes

Classes in the CRDataTypeMap unit.

Classes

Name Description

EDataMappingError Occurs when unable to map
data to a specified type.

EDataTypeMappingError Base class for errors
occuring at data mapping

Universal Data Access Components166

© 2013 Enter your company name

EInvalidDBTypeMapping Occurs when DB field type is
set incorrectly or when
attempting to set Length or
Scale for a type that doesn't
have such properties.

EInvalidFieldTypeMapping Occurs when Delphi field
type is set incorrectly or
when attempting to set
Length or Scale for a type
that doesn't have such
properties.

EUnsupportedDataTypeMapping Occurs when attempting to
register or perform
unsupported data type
mapping.

TMapRule Setting rule for data type
mapping

© 1997-2013 Devart. All Rights Reserved.

16.3.1.1 EDataMappingError Class

Occurs when unable to map data to a specified type.
For a list of all members of this type, see EDataMappingError members.

Unit

CRDataTypeMap

Syntax

EDataMappingError = class(EDataTypeMappingError);

Remarks

EDataMappingError occurs when unable to map data to a specified type. Use
EDataMappingError in an exception handling block.

Inheritance Hierarchy

EDataTypeMappingError
 EDataMappingError

© 1997-2013 Devart. All Rights Reserved.

16.3.1.1.1 Members

EDataMappingError class overview.

© 1997-2013 Devart. All Rights Reserved.

16.3.1.2 EDataTypeMappingError Class

Base class for errors occuring at data mapping
For a list of all members of this type, see EDataTypeMappingError members.

Reference 167

© 2013 Enter your company name

Unit

CRDataTypeMap

Syntax

EDataTypeMappingError = class(Exception);

Remarks

Base class for errors occuring at data mapping

© 1997-2013 Devart. All Rights Reserved.

16.3.1.2.1 Members

EDataTypeMappingError class overview.

© 1997-2013 Devart. All Rights Reserved.

16.3.1.3 EInvalidDBTypeMapping Class

Occurs when DB field type is set incorrectly or when attempting to set Length or
Scale for a type that doesn't have such properties.
For a list of all members of this type, see EInvalidDBTypeMapping members.

Unit

CRDataTypeMap

Syntax

EInvalidDBTypeMapping = class(EDataTypeMappingError);

Remarks

EInvalidDBTypeMapping occurs when DB field type is set incorrectly or when
attempting to set Length or Scale for a type that doesn't have such properties. Use
EInvalidDBTypeMapping in an exception handling block.

Inheritance Hierarchy

EDataTypeMappingError
 EInvalidDBTypeMapping

© 1997-2013 Devart. All Rights Reserved.

16.3.1.3.1 Members

EInvalidDBTypeMapping class overview.

© 1997-2013 Devart. All Rights Reserved.

16.3.1.4 EInvalidFieldTypeMapping Class

Occurs when Delphi field type is set incorrectly or when attempting to set Length or
Scale for a type that doesn't have such properties.
For a list of all members of this type, see EInvalidFieldTypeMapping members.

Universal Data Access Components168

© 2013 Enter your company name

Unit

CRDataTypeMap

Syntax

EInvalidFieldTypeMapping = class(EDataTypeMappingError);

Remarks

EInvalidFieldTypeMapping occurs when Delphi field type is set incorrectly or when
attempting to set Length or Scale for a type that doesn't have such properties. Use
EInvalidFieldTypeMapping in an exception handling block.

Inheritance Hierarchy

EDataTypeMappingError
 EInvalidFieldTypeMapping

© 1997-2013 Devart. All Rights Reserved.

16.3.1.4.1 Members

EInvalidFieldTypeMapping class overview.

© 1997-2013 Devart. All Rights Reserved.

16.3.1.5 EUnsupportedDataTypeMapping Class

Occurs when attempting to register or perform unsupported data type mapping.
For a list of all members of this type, see EUnsupportedDataTypeMapping members.

Unit

CRDataTypeMap

Syntax

EUnsupportedDataTypeMapping = class(EDataTypeMappingError);

Remarks

EUnsupportedDataTypeMapping occurs when attempting to register or perform
unsupported data type mapping. Use EUnsupportedDataTypeMapping in an
exception handling block.

Inheritance Hierarchy

EDataTypeMappingError
 EUnsupportedDataTypeMapping

© 1997-2013 Devart. All Rights Reserved.

16.3.1.5.1 Members

EUnsupportedDataTypeMapping class overview.

© 1997-2013 Devart. All Rights Reserved.

Reference 169

© 2013 Enter your company name

16.3.1.6 TMapRule Class

Setting rule for data type mapping
For a list of all members of this type, see TMapRule members.

Unit

CRDataTypeMap

Syntax

TMapRule = class(TCollectionItem);

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.1 Members

TMapRule class overview.

Properties

Name Description

DBLengthMax Maximum DB field size

DBLengthMin Minimum DB field size

DBScaleMax Maximum DB field scale

DBScaleMin Minimal DB field scale

DBType DB field type, that the rule is
applied to.

FieldLength Delphi field length

FieldName field name in DataSet

FieldScale Delphi field scale

IgnoreErrors Ignore data conversion
errors. Default value is
False.

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2 Properties

Properties of the TMapRule class.
For a complete list of the TMapRule class members, see the TMapRule Members
topic.

Public

Name Description

DBLengthMax Maximum DB field size

DBLengthMin Minimum DB field size

DBScaleMax Maximum DB field scale

DBScaleMin Minimal DB field scale

DBType DB field type, that the rule is
applied to.

FieldLength Delphi field length

Universal Data Access Components170

© 2013 Enter your company name

FieldName field name in DataSet

FieldScale Delphi field scale

IgnoreErrors Ignore data conversion
errors. Default value is
False.

See Also
 TMapRule Class
 TMapRule Class Members

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.1 DBLengthMax Property

Maximum DB field size

Class

TMapRule

Syntax

property DBLengthMax: Integer;

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.2 DBLengthMin Property

Minimum DB field size

Class

TMapRule

Syntax

property DBLengthMin: Integer;

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.3 DBScaleMax Property

Maximum DB field scale

Class

TMapRule

Syntax

property DBScaleMax: Integer;

© 1997-2013 Devart. All Rights Reserved.

Reference 171

© 2013 Enter your company name

16.3.1.6.2.4 DBScaleMin Property

Minimal DB field scale

Class

TMapRule

Syntax

property DBScaleMin: Integer;

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.5 DBType Property

DB field type, that the rule is applied to.

Class

TMapRule

Syntax

property DBType: Word;

Remarks

Setting DB field type, that the rule is applied to. If the current rule is set for
Connection, the rule will be applied to all fields of the specified type in all DataSets
related to this Connection.

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.6 FieldLength Property

Delphi field length

Class

TMapRule

Syntax

property FieldLength: Integer;

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.7 FieldName Property

field name in DataSet

Class

TMapRule

Syntax

property FieldName: string;

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components172

© 2013 Enter your company name

16.3.1.6.2.8 FieldScale Property

Delphi field scale

Class

TMapRule

Syntax

property FieldScale: Integer;

© 1997-2013 Devart. All Rights Reserved.

16.3.1.6.2.9 IgnoreErrors Property

Ignore data conversion errors. Default value is False.

Class

TMapRule

Syntax

property IgnoreErrors: Boolean;

© 1997-2013 Devart. All Rights Reserved.

16.4 CREncryption

This unit contains base classes for data encryption.

Classes

Name Description

TCREncryptor The class that performs data
encryption and decryption.
For the list of all members of
this type, see CREncryption
members.

Enumerations

Name Description

TCREncDataHeader Specifies whether the
additional information is
stored with the encrypted
data.

TCREncryptionAlgorithm Specifies the algorithm of
data encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction Specifies the action to
perform on data fetching
when hash data is invalid.

Reference 173

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.4.1 Classes

Classes in the CREncryption unit.

Classes

Name Description

TCREncryptor The class that performs data
encryption and decryption.
For the list of all members of
this type, see CREncryption
members.

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1 TCREncryptor Class

The class that performs data encryption and decryption. For the list of all members
of this type, see CREncryption members.
For a list of all members of this type, see TCREncryptor members.

Unit

CREncryption

Syntax

TCREncryptor = class(TComponent);

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.1 Members

TCREncryptor class overview.

Properties

Name Description

DataHeader Specifies whether the
additional information is
stored with the encrypted
data.

EncryptionAlgorithm Specifies the algorithm of
data encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction Specifies the action to
perform on data fetching
when hash data is invalid.

Password Used to set a password that
is used to generate a key for
encryption.

Universal Data Access Components174

© 2013 Enter your company name

Methods

Name Description

SetKey Sets a key, using which data
is encrypted.

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.2 Properties

Properties of the TCREncryptor class.
For a complete list of the TCREncryptor class members, see the TCREncryptor
Members topic.

Published

Name Description

DataHeader Specifies whether the
additional information is
stored with the encrypted
data.

EncryptionAlgorithm Specifies the algorithm of
data encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction Specifies the action to
perform on data fetching
when hash data is invalid.

Password Used to set a password that
is used to generate a key for
encryption.

See Also
 TCREncryptor Class
 TCREncryptor Class Members

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.2.1 DataHeader Property

Specifies whether the additional information is stored with the encrypted data.

Class

TCREncryptor

Syntax

property DataHeader: TCREncDataHeader default ehTagAndHash;

Remarks

Use DataHeader to specify whether the additional information is stored with the
encrypted data. Default value is ehTagAndHash.

Reference 175

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.2.2 EncryptionAlgorithm Property

Specifies the algorithm of data encryption.

Class

TCREncryptor

Syntax

property EncryptionAlgorithm: TCREncryptionAlgorithm default
eaBlowfish;

Remarks

Use EncryptionAlgorithm to specify the algorithm of data encryption. Default value
is caBlowfish.

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.2.3 HashAlgorithm Property

Specifies the algorithm of generating hash data.

Class

TCREncryptor

Syntax

property HashAlgorithm: TCRHashAlgorithm default haSHA1;

Remarks

Use HashAlgorithm to specify the algorithm of generating hash data. This property
is used only if hash is stored with the encrypted data (the DataHeader property is
set to ehTagAndHash). Default value is haSHA1.

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.2.4 InvalidHashAction Property

Specifies the action to perform on data fetching when hash data is invalid.

Class

TCREncryptor

Syntax

property InvalidHashAction: TCRInvalidHashAction default ihFail;

Remarks

Use InvalidHashAction to specify the action to perform on data fetching when hash
data is invalid. This property is used only if hash is stored with the encrypted data
(the DataHeader property is set to ehTagAndHash). Default value is ihFail. If the
DataHeader property is set to ehTagAndHash, then on data fetching from a server

Universal Data Access Components176

© 2013 Enter your company name

the hash check is performed for each record in the following way: after data
decryption its hash is calculated and compared with the hash stored in the field. If
these values don't coincide, it means that the stored data is incorrect, and
depending on the value of the InvalidHashAction property one of the following
actions is performed: ihFail - the EInvalidHash exception is raised and further data
reading from the server is interrupted. ihSkipData - the value of the field for this
record is set to Null. No exception is raised. ihIgnoreError - in spite of the fact that
the data is not valid, the value is set in the field. No exception is raised.

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.2.5 Password Property

Used to set a password that is used to generate a key for encryption.

Class

TCREncryptor

Syntax

property Password: string;

Remarks

Use Password to set a password that is used to generate a key for encryption. Note:
Calling of the SetKey method clears the Password property.

See Also

 SetKey

© 1997-2013 Devart. All Rights Reserved.

16.4.1.1.3 Methods

Methods of the TCREncryptor class.
For a complete list of the TCREncryptor class members, see the TCREncryptor
Members topic.

Public

Name Description

SetKey Sets a key, using which data
is encrypted.

See Also
 TCREncryptor Class
 TCREncryptor Class Members

© 1997-2013 Devart. All Rights Reserved.

Reference 177

© 2013 Enter your company name

16.4.1.1.3.1 SetKey Method

Sets a key, using which data is encrypted.

Class

TCREncryptor

Syntax

procedure SetKey(const Key; Count: Integer); overload;procedure
SetKey(const Key: TBytes; Offset: Integer; Count: Integer);
overload;
Parameters

Key

Offset
Sets a key with an offset, using which data is encrypted.

Count
Sets a key, using which data is encrypted.

© 1997-2013 Devart. All Rights Reserved.

16.4.2 Enumerations

Enumerations in the CREncryption unit.

Enumerations

Name Description

TCREncDataHeader Specifies whether the
additional information is
stored with the encrypted
data.

TCREncryptionAlgorithm Specifies the algorithm of
data encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction Specifies the action to
perform on data fetching
when hash data is invalid.

© 1997-2013 Devart. All Rights Reserved.

16.4.2.1 TCREncDataHeader Enumeration

Specifies whether the additional information is stored with the encrypted data.

Unit

CREncryption

Syntax

TCREncDataHeader = (ehTagAndHash, ehTag, ehNone);

Universal Data Access Components178

© 2013 Enter your company name

Values

Value Meaning

ehNone No additional information is stored.

ehTag GUID and the random initialization vector are stored with
the encrypted data.

ehTagAndHash Hash, GUID, and the random initialization vector are stored
with the encrypted data.

See Also

 Data Encryption

© 1997-2013 Devart. All Rights Reserved.

16.4.2.2 TCREncryptionAlgorithm Enumeration

Specifies the algorithm of data encryption.

Unit

CREncryption

Syntax

TCREncryptionAlgorithm = (eaTripleDES, eaBlowfish, eaAES128,
eaAES192, eaAES256, eaCast128, eaRC4);

Values

Value Meaning

eaAES128 The AES encryption algorithm with key size of 128 bits is
used.

eaAES192 The AES encryption algorithm with key size of 192 bits is
used.

eaAES256 The AES encryption algorithm with key size of 256 bits is
used.

eaBlowfish The Blowfish encryption algorithm is used.

eaCast128 The CAST-128 encryption algorithm with key size of 128
bits is used.

eaRC4 The RC4 encryption algorithm is used.

eaTripleDES The Triple DES encryption algorithm is used.

© 1997-2013 Devart. All Rights Reserved.

16.4.2.3 TCRHashAlgorithm Enumeration

Specifies the algorithm of generating hash data.

Unit

CREncryption

Reference 179

© 2013 Enter your company name

Syntax

TCRHashAlgorithm = (haSHA1, haMD5);

Values

Value Meaning

haMD5 The MD5 hash algorithm is used.

haSHA1 The SHA-1 hash algorithm is used.

© 1997-2013 Devart. All Rights Reserved.

16.4.2.4 TCRInvalidHashAction Enumeration

Specifies the action to perform on data fetching when hash data is invalid.

Unit

CREncryption

Syntax

TCRInvalidHashAction = (ihFail, ihSkipData, ihIgnoreError);

Values

Value Meaning

ihFail An exception is raised.

ihIgnoreError Hash checking is not performed. No exception is raised.

ihSkipData If hash is invalid the field value is set to Null. No exception
is raised.

© 1997-2013 Devart. All Rights Reserved.

16.5 CRVio

This unit contains classes, used for establishing HTTP connections.

Classes

Name Description

THttpOptions The class contains settings
for HTTP connection.

TProxyOptions This class is used when
connecting through proxy
server to establish an HTTP
connection.

© 1997-2013 Devart. All Rights Reserved.

16.5.1 Classes

Classes in the CRVio unit.

Classes

Universal Data Access Components180

© 2013 Enter your company name

Name Description

THttpOptions The class contains settings
for HTTP connection.

TProxyOptions This class is used when
connecting through proxy
server to establish an HTTP
connection.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.1 THttpOptions Class

The class contains settings for HTTP connection.
For a list of all members of this type, see THttpOptions members.

Unit

CRVio

Syntax

THttpOptions = class(TPersistent);

Remarks

The THttpOptions class contains settings for HTTP connection.
For more information on HTTP tunneling refer to the Network Tunneling article.

See Also

 Network Tunneling

© 1997-2013 Devart. All Rights Reserved.

16.5.1.1.1 Members

THttpOptions class overview.

Properties

Name Description

Password Holds the password for HTTP
authorization.

ProxyOptions Holds a TProxyOptions
object that contains settings
for proxy connection.

Url Holds the url of the
tunneling PHP script.

Username Holds the user name for
HTTP authorization.

© 1997-2013 Devart. All Rights Reserved.

Reference 181

© 2013 Enter your company name

16.5.1.1.2 Properties

Properties of the THttpOptions class.
For a complete list of the THttpOptions class members, see the THttpOptions
Members topic.

Published

Name Description

Password Holds the password for HTTP
authorization.

ProxyOptions Holds a TProxyOptions
object that contains settings
for proxy connection.

Url Holds the url of the
tunneling PHP script.

Username Holds the user name for
HTTP authorization.

See Also
 THttpOptions Class
 THttpOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

16.5.1.1.2.1 Password Property

Holds the password for HTTP authorization.

Class

THttpOptions

Syntax

property Password: string;

Remarks

The Password property holds the password for HTTP authorization.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.1.2.2 ProxyOptions Property

Holds a TProxyOptions object that contains settings for proxy connection.

Class

THttpOptions

Syntax

property ProxyOptions: TProxyOptions;

Remarks

The ProxyOptions property holds a TProxyOptions object that contains settings for

Universal Data Access Components182

© 2013 Enter your company name

proxy connection.
If it is necessary to connect to server in another network, sometimes the client can
reach it only through proxy. In this case in addition to connection string you have to
setup ProxyOptions.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.1.2.3 Url Property

Holds the url of the tunneling PHP script.

Class

THttpOptions

Syntax

property Url: string;

Remarks

The Url property holds the url of the tunneling PHP script. For example, if the script
is in the server root, the url can be the following: http://server/tunnel.php.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.1.2.4 Username Property

Holds the user name for HTTP authorization.

Class

THttpOptions

Syntax

property Username: string;

Remarks

The Username property holds the user name for HTTP authorization.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.2 TProxyOptions Class

This class is used when connecting through proxy server to establish an HTTP
connection.
For a list of all members of this type, see TProxyOptions members.

Unit

CRVio

Syntax

TProxyOptions = class(TPersistent);

Remarks

Reference 183

© 2013 Enter your company name

The TProxyOptions class is used when connecting through proxy server to establish
an HTTP connection.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.2.1 Members

TProxyOptions class overview.

Properties

Name Description

Hostname Holds the host name or IP
address to connect to proxy
server.

Password Holds the password for the
proxy server account.

Port Used to specify the port
number for TCP/IP
connection with proxy
server.

Username Holds the proxy server
account name.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.2.2 Properties

Properties of the TProxyOptions class.
For a complete list of the TProxyOptions class members, see the TProxyOptions
Members topic.

Published

Name Description

Hostname Holds the host name or IP
address to connect to proxy
server.

Password Holds the password for the
proxy server account.

Port Used to specify the port
number for TCP/IP
connection with proxy
server.

Username Holds the proxy server
account name.

See Also
 TProxyOptions Class
 TProxyOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components184

© 2013 Enter your company name

16.5.1.2.2.1 Hostname Property

Holds the host name or IP address to connect to proxy server.

Class

TProxyOptions

Syntax

property Hostname: string;

Remarks

The Hostname property holds the host name or IP address to connect to proxy
server.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.2.2.2 Password Property

Holds the password for the proxy server account.

Class

TProxyOptions

Syntax

property Password: string;

Remarks

The Password property holds the password for the proxy server account.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.2.2.3 Port Property

Used to specify the port number for TCP/IP connection with proxy server.

Class

TProxyOptions

Syntax

property Port: integer default 0;

Remarks

Use the Port property to specify the port number for TCP/IP connection with proxy
server.

© 1997-2013 Devart. All Rights Reserved.

16.5.1.2.2.4 Username Property

Holds the proxy server account name.

Class

Reference 185

© 2013 Enter your company name

TProxyOptions

Syntax

property Username: string;

Remarks

The Username property holds the proxy server account name.

© 1997-2013 Devart. All Rights Reserved.

16.6 DAAlerter

This unit contains the base class for the TUniAlerter component.

Classes

Name Description

TDAAlerter A base class that defines
functionality for database
event notification.

Types

Name Description

TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.

TAlerterEventEvent This type is used for the E:
Devart.UniDac.TUniAlerter.
OnEvent event.

© 1997-2013 Devart. All Rights Reserved.

16.6.1 Classes

Classes in the DAAlerter unit.

Classes

Name Description

TDAAlerter A base class that defines
functionality for database
event notification.

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1 TDAAlerter Class

A base class that defines functionality for database event notification.
For a list of all members of this type, see TDAAlerter members.

Unit

DAAlerter

Universal Data Access Components186

© 2013 Enter your company name

Syntax

TDAAlerter = class(TComponent);

Remarks

TDAAlerter is a base class that defines functionality for descendant classes support
database event notification. Applications never use TDAAlerter objects directly.
Instead they use descendants of TDAAlerter.
The TDAAlerter component allows you to register interest in and handle events
posted by a database server. Use TDAAlerter to handle events for responding to
actions and database changes made by other applications. To get events, an
application must register required events. To do this, set the Events property to the
required events and call the Start method. When one of the registered events
occurs OnEvent handler is called.

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.1 Members

TDAAlerter class overview.

Properties

Name Description

Active Used to determine if
TDAAlerter waits for
messages.

AutoRegister Used to automatically
register events whenever
connection opens.

Connection Used to specify the
connection for TDAAlerter.

Methods

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

Events

Name Description

OnError Occurs if an exception
occurs in waiting process

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.2 Properties

Properties of the TDAAlerter class.
For a complete list of the TDAAlerter class members, see the TDAAlerter Members

Reference 187

© 2013 Enter your company name

topic.

Public

Name Description

Active Used to determine if
TDAAlerter waits for
messages.

AutoRegister Used to automatically
register events whenever
connection opens.

Connection Used to specify the
connection for TDAAlerter.

See Also
 TDAAlerter Class
 TDAAlerter Class Members

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.2.1 Active Property

Used to determine if TDAAlerter waits for messages.

Class

TDAAlerter

Syntax

property Active: boolean default False;

Remarks

Check the Active property to know whether TDAlerter waits for messages or not. Set
it to True to register events.

See Also

 Start
 Stop

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.2.2 AutoRegister Property

Used to automatically register events whenever connection opens.

Class

TDAAlerter

Syntax

property AutoRegister: boolean default False;

Universal Data Access Components188

© 2013 Enter your company name

Remarks

Set the AutoRegister property to True to automatically register events whenever
connection opens.

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.2.3 Connection Property

Used to specify the connection for TDAAlerter.

Class

TDAAlerter

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection for TDAAlerter.

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.3 Methods

Methods of the TDAAlerter class.
For a complete list of the TDAAlerter class members, see the TDAAlerter Members
topic.

Public

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

See Also
 TDAAlerter Class
 TDAAlerter Class Members

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.3.1 SendEvent Method

Sends an event with Name and content Message.

Class

TDAAlerter

Syntax

procedure SendEvent(const EventName: string; const Message:
string);

Reference 189

© 2013 Enter your company name

Parameters

EventName
Holds the event name.

Message
Holds the content Message of the event.

Remarks

Use SendEvent procedure to send an event with Name and content Message.

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.3.2 Start Method

Starts waiting process.

Class

TDAAlerter

Syntax

procedure Start;

Remarks

Call the Start method to run waiting process. After starting TDAAlerter waits for
messages with names defined by the Events property.

See Also

 Stop
 Active

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.3.3 Stop Method

Stops waiting process.

Class

TDAAlerter

Syntax

procedure Stop;

Remarks

Call Stop method to end waiting process.

See Also

 Start

Universal Data Access Components190

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.4 Events

Events of the TDAAlerter class.
For a complete list of the TDAAlerter class members, see the TDAAlerter Members
topic.

Public

Name Description

OnError Occurs if an exception
occurs in waiting process

See Also
 TDAAlerter Class
 TDAAlerter Class Members

© 1997-2013 Devart. All Rights Reserved.

16.6.1.1.4.1 OnError Event

Occurs if an exception occurs in waiting process

Class

TDAAlerter

Syntax

property OnError: TAlerterErrorEvent;

Remarks

The OnError event occurs if an exception occurs in waiting process. Alerter stops in
this case. The exception can be accessed using the E parameter.

© 1997-2013 Devart. All Rights Reserved.

16.6.2 Types

Types in the DAAlerter unit.

Types

Name Description

TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.

TAlerterEventEvent This type is used for the E:
Devart.UniDac.TUniAlerter.
OnEvent event.

© 1997-2013 Devart. All Rights Reserved.

Reference 191

© 2013 Enter your company name

16.6.2.1 TAlerterErrorEvent Procedure Reference

This type is used for the TDAAlerter.OnError event.

Unit

DAAlerter

Syntax

TAlerterErrorEvent = procedure (Sender: TDAAlerter; E: Exception)
of object;
Parameters

Sender
An object that raised the event.

E
Exception object.

© 1997-2013 Devart. All Rights Reserved.

16.6.2.2 TAlerterEventEvent Procedure Reference

This type is used for the E:Devart.UniDac.TUniAlerter.OnEvent event.

Unit

DAAlerter

Syntax

TAlerterEventEvent = procedure (Sender: TDAAlerter; const
EventName: string; const Message: string) of object;
Parameters

Sender
An object that raised the event.

EventName
A name of event (alert or pipe).

Message
The content of message waiting process receives.

© 1997-2013 Devart. All Rights Reserved.

16.7 DADump

This unit contains the base class for the TUniDump component.

Classes

Name Description

TDADump A base class that defines
functionality for descendant
classes that dump database
objects to a script.

Universal Data Access Components192

© 2013 Enter your company name

TDADumpOptions This class allows setting up
the behaviour of the
TDADump class.

Types

Name Description

TDABackupProgressEvent This type is used for the
TDADump.
OnBackupProgress event.

TDARestoreProgressEvent This type is used for the
TDADump.
OnRestoreProgress event.

© 1997-2013 Devart. All Rights Reserved.

16.7.1 Classes

Classes in the DADump unit.

Classes

Name Description

TDADump A base class that defines
functionality for descendant
classes that dump database
objects to a script.

TDADumpOptions This class allows setting up
the behaviour of the
TDADump class.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1 TDADump Class

A base class that defines functionality for descendant classes that dump database
objects to a script.
For a list of all members of this type, see TDADump members.

Unit

DADump

Syntax

TDADump = class(TComponent);

Remarks

TDADump is a base class that defines functionality for descendant classes that
dump database objects to a script. Applications never use TDADump objects
directly. Instead they use descendants of TDADump.
Use TDADump descedants to dump database objects, such as tables, stored
procedures, and functions for backup or for transferring the data to another SQL
server. The dump contains SQL statements to create the table or other database

Reference 193

© 2013 Enter your company name

objects and/or populate the table.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.1 Members

TDADump class overview.

Properties

Name Description

Connection Used to specify a connection
object that will be used to
connect to a data store.

Debug Used to display executing
statement, all its
parameters' values, and the
type of parameters.

Options Used to specify the
behaviour of a TDADump
component.

SQL Used to set or get the dump
script.

TableNames Used to set the names of the
tables to dump.

Methods

Name Description

Backup Dumps database objects to
the TDADump.SQL property.

BackupQuery Dumps the results of a
particular query.

BackupToFile Dumps database objects to
the specified file.

BackupToStream Dumps database objects to
the stream.

Restore Executes a script contained
in the SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received
from the stream.

Events

Name Description

Universal Data Access Components194

© 2013 Enter your company name

OnBackupProgress Occurs to indicate the
TDADump.Backup, M:
Devart.Dac.TDADump.
BackupToFile(System.
String) or M:Devart.Dac.
TDADump.BackupToStream
(Borland.Vcl.TStream)
method execution progress.

OnError Occurs when server raises
some error on TDADump.
Restore.

OnRestoreProgress Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile,
or TDADump.
RestoreFromStream method
execution progress.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.2 Properties

Properties of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members
topic.

Public

Name Description

Connection Used to specify a connection
object that will be used to
connect to a data store.

Options Used to specify the
behaviour of a TDADump
component.

Published

Name Description

Debug Used to display executing
statement, all its
parameters' values, and the
type of parameters.

SQL Used to set or get the dump
script.

TableNames Used to set the names of the
tables to dump.

See Also
 TDADump Class
 TDADump Class Members

Reference 195

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.2.1 Connection Property

Used to specify a connection object that will be used to connect to a data store.

Class

TDADump

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to
connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or
its descendant class objects.
At runtime, link an instance of a TCustomDAConnection descendant to the
Connection property.

See Also

 TCustomDAConnection

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.2.2 Debug Property

Used to display executing statement, all its parameters' values, and the type of
parameters.

Class

TDADump

Syntax

property Debug: boolean default False;

Remarks

Used to display executing statement, all its parameters' values, and the type of
parameters.

See Also

 TCustomDADataSet.Debug
 TCustomDASQL.Debug

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components196

© 2013 Enter your company name

16.7.1.1.2.3 Options Property

Used to specify the behaviour of a TDADump component.

Class

TDADump

Syntax

property Options: TDADumpOptions;

Remarks

Use the Options property to specify the behaviour of a TDADump component.
Descriptions of all options are in the table below.

Option Name Description

AddDrop Used to add drop statements to a script
before creating statements.

GenerateHeader Used to add a comment header to a
script.

QuoteNames Used for TDADump to quote all
database object names in generated
SQL statements.

©

 1997-2013 Devart. All Rights Reserved.

16.7.1.1.2.4 SQL Property

Used to set or get the dump script.

Class

TDADump

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to get or set the dump script. The SQL property stores script
that is executed by the Restore method. This property will store the result of Backup
and BackupQuery. At design time the SQL property can be edited by invoking the
String List editor in Object Inspector.

See Also

 Restore
 Backup
 BackupQuery

Reference 197

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.2.5 TableNames Property

Used to set the names of the tables to dump.

Class

TDADump

Syntax

property TableNames: string;

Remarks

Use the TableNames property to set the names of the tables to dump. Table names
must be separated with commas. If it is empty, the Backup method will dump all
available tables.

See Also

 Backup

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3 Methods

Methods of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members
topic.

Public

Name Description

Backup Dumps database objects to
the TDADump.SQL property.

BackupQuery Dumps the results of a
particular query.

BackupToFile Dumps database objects to
the specified file.

BackupToStream Dumps database objects to
the stream.

Restore Executes a script contained
in the SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received
from the stream.

See Also
 TDADump Class
 TDADump Class Members

Universal Data Access Components198

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.1 Backup Method

Dumps database objects to the SQL property.

Class

TDADump

Syntax

procedure Backup;

Remarks

Call the Backup method to dump database objects. The result script will be stored in
the SQL property.

See Also

 SQL
 Restore
 BackupToFile
 BackupToStream
 BackupQuery

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.2 BackupQuery Method

Dumps the results of a particular query.

Class

TDADump

Syntax

procedure BackupQuery(const Query: string);
Parameters

Query
Holds a query used for data selection.

Remarks

Call the BackupQuery method to dump the results of a particular query. Query must
be a valid select statement. If this query selects data from several tables, only data
of the first table in the from list will be dumped.

See Also

 Restore
 Backup

Reference 199

© 2013 Enter your company name

 BackupToFile
 BackupToStream

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.3 BackupToFile Method

Dumps database objects to the specified file.

Class

TDADump

Syntax

procedure BackupToFile(const FileName: string; const Query: string
= '');
Parameters

FileName
Holds the file name to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToFile method to dump database objects to the specified file.

See Also

 RestoreFromStream
 Backup
 BackupToStream

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.4 BackupToStream Method

Dumps database objects to the stream.

Class

TDADump

Syntax

procedure BackupToStream(Stream: TStream; const Query: string = ''
);
Parameters

Stream
Holds the stream to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Universal Data Access Components200

© 2013 Enter your company name

Call the BackupToStream method to dump database objects to the stream.

See Also

 RestoreFromStream
 Backup
 BackupToFile

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.5 Restore Method

Executes a script contained in the SQL property.

Class

TDADump

Syntax

procedure Restore;

Remarks

Call the Restore method to execute a script contained in the SQL property.

See Also

 RestoreFromFile
 RestoreFromStream
 Backup
 SQL

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.6 RestoreFromFile Method

Executes a script from a file.

Class

TDADump

Syntax

procedure RestoreFromFile(const FileName: string);
Parameters

FileName
Holds the file name to execute a script from.

Remarks

Call the RestoreFromFile method to execute a script from the specified file.

Reference 201

© 2013 Enter your company name

See Also

 Restore
 RestoreFromStream
 BackupToFile

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.3.7 RestoreFromStream Method

Executes a script received from the stream.

Class

TDADump

Syntax

procedure RestoreFromStream(Stream: TStream);
Parameters

Stream
Holds a stream to receive a script to be executed.

Remarks

Call the RestoreFromStream method to execute a script received from the stream.

See Also

 Restore
 RestoreFromFile
 BackupToStream

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.4 Events

Events of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members
topic.

Published

Name Description

OnBackupProgress Occurs to indicate the
TDADump.Backup, M:
Devart.Dac.TDADump.
BackupToFile(System.
String) or M:Devart.Dac.
TDADump.BackupToStream
(Borland.Vcl.TStream)
method execution progress.

Universal Data Access Components202

© 2013 Enter your company name

OnError Occurs when server raises
some error on TDADump.
Restore.

OnRestoreProgress Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile,
or TDADump.
RestoreFromStream method
execution progress.

See Also
 TDADump Class
 TDADump Class Members

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.4.1 OnBackupProgress Event

Occurs to indicate the Backup, M:Devart.Dac.TDADump.BackupToFile(System.
String) or M:Devart.Dac.TDADump.BackupToStream(Borland.Vcl.TStream) method
execution progress.

Class

TDADump

Syntax

property OnBackupProgress: TDABackupProgressEvent;

Remarks

The OnBackupProgress event occurs several times during the dumping process of
the Backup, M:Devart.Dac.TDADump.BackupToFile(System.String), or M:Devart.
Dac.TDADump.BackupToStream(Borland.Vcl.TStream) method execution and
indicates its progress. ObjectName parameter indicates the name of the currently
dumping database object. ObjectNum shows the number of the current database
object in the backup queue starting from zero. ObjectCount shows the quantity of
database objects to dump. Percent parameter shows the current percentage of the
current table data dumped, not the current percentage of the entire dump process.

See Also

 Backup
 BackupToFile
 BackupToStream

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.4.2 OnError Event

Occurs when server raises some error on Restore.

Class

Reference 203

© 2013 Enter your company name

TDADump

Syntax

property OnError: TOnErrorEvent;

Remarks

The OnError event occurs when server raises some error on Restore.
Action indicates the action to take when the OnError handler exits. On entry into the
handler, Action is always set to eaException.
Note: You should add the DAScript module to the 'uses' list to use the OnError
event handler.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.1.4.3 OnRestoreProgress Event

Occurs to indicate the Restore, RestoreFromFile, or RestoreFromStream method
execution progress.

Class

TDADump

Syntax

property OnRestoreProgress: TDARestoreProgressEvent;

Remarks

The OnRestoreProgress event occurs several times during the dumping process of
the Restore, RestoreFromFile, or RestoreFromStream method execution and
indicates its progress. The Percent parameter of the OnRestoreProgress event
handler indicates the percentage of the whole restore script execution.

See Also

 Restore
 RestoreFromFile
 RestoreFromStream

© 1997-2013 Devart. All Rights Reserved.

16.7.1.2 TDADumpOptions Class

This class allows setting up the behaviour of the TDADump class.
For a list of all members of this type, see TDADumpOptions members.

Unit

DADump

Syntax

TDADumpOptions = class(TPersistent);

Universal Data Access Components204

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.7.1.2.1 Members

TDADumpOptions class overview.

Properties

Name Description

AddDrop Used to add drop statements
to a script before creating
statements.

GenerateHeader Used to add a comment
header to a script.

QuoteNames Used for TDADump to quote
all database object names in
generated SQL statements.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.2.2 Properties

Properties of the TDADumpOptions class.
For a complete list of the TDADumpOptions class members, see the
TDADumpOptions Members topic.

Published

Name Description

AddDrop Used to add drop statements
to a script before creating
statements.

GenerateHeader Used to add a comment
header to a script.

QuoteNames Used for TDADump to quote
all database object names in
generated SQL statements.

See Also
 TDADumpOptions Class
 TDADumpOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

16.7.1.2.2.1 AddDrop Property

Used to add drop statements to a script before creating statements.

Class

TDADumpOptions

Syntax

property AddDrop: boolean default True;

Reference 205

© 2013 Enter your company name

Remarks

Use the AddDrop property to add drop statements to a script before creating
statements.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.2.2.2 GenerateHeader Property

Used to add a comment header to a script.

Class

TDADumpOptions

Syntax

property GenerateHeader: boolean default True;

Remarks

Use the GenerateHeader property to add a comment header to a script. It contains
script generation date, DAC version, and some other information.

© 1997-2013 Devart. All Rights Reserved.

16.7.1.2.2.3 QuoteNames Property

Used for TDADump to quote all database object names in generated SQL
statements.

Class

TDADumpOptions

Syntax

property QuoteNames: boolean default False;

Remarks

If the QuoteNames property is True, TDADump quotes all database object names in
generated SQL statements.

© 1997-2013 Devart. All Rights Reserved.

16.7.2 Types

Types in the DADump unit.

Types

Name Description

TDABackupProgressEvent This type is used for the
TDADump.
OnBackupProgress event.

Universal Data Access Components206

© 2013 Enter your company name

TDARestoreProgressEvent This type is used for the
TDADump.
OnRestoreProgress event.

© 1997-2013 Devart. All Rights Reserved.

16.7.2.1 TDABackupProgressEvent Procedure Reference

This type is used for the TDADump.OnBackupProgress event.

Unit

DADump

Syntax

TDABackupProgressEvent = procedure (Sender: TObject; ObjectName:
string; ObjectNum: integer; ObjectCount: integer; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

ObjectName
The name of the currently dumping database object.

ObjectNum
The number of the current database object in the backup queue starting from
zero.

ObjectCount
The quantity of database objects to dump.

Percent
The current percentage of the current table data dumped.

© 1997-2013 Devart. All Rights Reserved.

16.7.2.2 TDARestoreProgressEvent Procedure Reference

This type is used for the TDADump.OnRestoreProgress event.

Unit

DADump

Syntax

TDARestoreProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

Percent
The percentage of the whole restore script execution.

Reference 207

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.8 DALoader

This unit contains the base class for the TUniLoader component.

Classes

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of
TDAColumn objects.

TDALoader This class allows loading
external data into database.

Types

Name Description

TDAPutDataEvent This type is used for the
TDALoader.OnPutData
event.

TGetColumnDataEvent This type is used for the
TDALoader.
OnGetColumnData event.

TLoaderProgressEvent This type is used for the
TDALoader.OnProgress
event.

© 1997-2013 Devart. All Rights Reserved.

16.8.1 Classes

Classes in the DALoader unit.

Classes

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of
TDAColumn objects.

TDALoader This class allows loading
external data into database.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.1 TDAColumn Class

Represents the attributes for column loading.
For a list of all members of this type, see TDAColumn members.

Unit

Universal Data Access Components208

© 2013 Enter your company name

DALoader

Syntax

TDAColumn = class(TCollectionItem);

Remarks

Each TDALoader uses TDAColumns to maintain a collection of TDAColumn objects.
TDAColumn object represents the attributes for column loading. Every TDAColumn
object corresponds to one of the table fields with the same name as its TDAColumn.
Name property.
To create columns at design-time use the column editor of the TDALoader
component.

See Also

 TDALoader
 TDAColumns

© 1997-2013 Devart. All Rights Reserved.

16.8.1.1.1 Members

TDAColumn class overview.

Properties

Name Description

FieldType Used to specify the types of
values that will be loaded.

Name Used to specify the field
name of loading table.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.1.2 Properties

Properties of the TDAColumn class.
For a complete list of the TDAColumn class members, see the TDAColumn
Members topic.

Published

Name Description

FieldType Used to specify the types of
values that will be loaded.

Name Used to specify the field
name of loading table.

See Also
 TDAColumn Class
 TDAColumn Class Members

Reference 209

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.8.1.1.2.1 FieldType Property

Used to specify the types of values that will be loaded.

Class

TDAColumn

Syntax

property FieldType: TFieldType default ftString;

Remarks

Use the FieldType property to specify the types of values that will be loaded. Field
types for columns may not match data types for the corresponding fields in the
database table. TDALoader will cast data values to the types of their fields.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.1.2.2 Name Property

Used to specify the field name of loading table.

Class

TDAColumn

Syntax

property Name: string;

Remarks

Each TDAColumn corresponds to one field of the loading table. Use the Name
property to specify the name of this field.

See Also

 FieldType

© 1997-2013 Devart. All Rights Reserved.

16.8.1.2 TDAColumns Class

Holds a collection of TDAColumn objects.
For a list of all members of this type, see TDAColumns members.

Unit

DALoader

Syntax

TDAColumns = class(TOwnedCollection);

Universal Data Access Components210

© 2013 Enter your company name

Remarks

Each TDAColumns holds a collection of TDAColumn objects. TDAColumns maintains
an index of the columns in its Items array. The Count property contains the number
of columns in the collection. At design-time, use the Columns editor to add, remove,
or modify columns.

See Also

 TDALoader
 TDAColumn

© 1997-2013 Devart. All Rights Reserved.

16.8.1.2.1 Members

TDAColumns class overview.

Properties

Name Description

Items Used to access individual
columns.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.2.2 Properties

Properties of the TDAColumns class.
For a complete list of the TDAColumns class members, see the TDAColumns
Members topic.

Public

Name Description

Items Used to access individual
columns.

See Also
 TDAColumns Class
 TDAColumns Class Members

© 1997-2013 Devart. All Rights Reserved.

16.8.1.2.2.1 Items Property(Indexer)

Used to access individual columns.

Class

TDAColumns

Syntax

Reference 211

© 2013 Enter your company name

property Items[Index: integer]: TDAColumn; default;
Parameters

Index
Holds the Index of TDAColumn to refer to.

Remarks

Use the Items property to access individual columns. The value of the Index
parameter corresponds to the Index property of TDAColumn.

See Also

 TDAColumn

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3 TDALoader Class

This class allows loading external data into database.
For a list of all members of this type, see TDALoader members.

Unit

DALoader

Syntax

TDALoader = class(TComponent);

Remarks

TDALoader allows loading external data into database. To specify the name of
loading table set the TDALoader.TableName property. Use the TDALoader.Columns
property to access individual columns. Write the TDALoader.OnGetColumnData or
TDALoader.OnPutData event handlers to read external data and pass it to the
database. Call the TDALoader.Load method to start loading data.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.1 Members

TDALoader class overview.

Properties

Name Description

Columns Used to add a TDAColumn
object for each field that will
be loaded.

Connection Used to specify
TCustomDAConnection in
which TDALoader will be
executed.

Universal Data Access Components212

© 2013 Enter your company name

TableName Used to specify the name of
the table to which data will
be loaded.

Methods

Name Description

CreateColumns Creates TDAColumn objects
for all fields of the table with
the same name as
TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the
specified dataset.

PutColumnData Overloaded. Puts the value
of individual columns.

Events

Name Description

OnGetColumnData Occurs when it is needed to
put column values.

OnProgress Occurs if handling data
loading progress of the
TDALoader.
LoadFromDataSet method is
needed.

OnPutData Occurs when putting loading
data by rows is needed.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.2 Properties

Properties of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members
topic.

Public

Name Description

Columns Used to add a TDAColumn
object for each field that will
be loaded.

Connection Used to specify
TCustomDAConnection in
which TDALoader will be
executed.

TableName Used to specify the name of
the table to which data will
be loaded.

Reference 213

© 2013 Enter your company name

See Also
 TDALoader Class
 TDALoader Class Members

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.2.1 Columns Property

Used to add a TDAColumn object for each field that will be loaded.

Class

TDALoader

Syntax

property Columns: TDAColumns stored IsColumnsStored;

Remarks

Use the Columns property to add a TDAColumn object for each field that will be
loaded.

See Also

 TDAColumns

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.2.2 Connection Property

Used to specify TCustomDAConnection in which TDALoader will be executed.

Class

TDALoader

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify TCustomDAConnection in which TDALoader
will be executed. If Connection is not connected, the Load method calls
TCustomDAConnection.Connect.

See Also

 TCustomDAConnection

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components214

© 2013 Enter your company name

16.8.1.3.2.3 TableName Property

Used to specify the name of the table to which data will be loaded.

Class

TDALoader

Syntax

property TableName: string;

Remarks

Set the TableName property to specify the name of the table to which data will be
loaded. Add TDAColumn objects to Columns for the fields that are needed to be
loaded.

See Also

 TDAColumn
 TCustomDAConnection.GetTableNames

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.3 Methods

Methods of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members
topic.

Public

Name Description

CreateColumns Creates TDAColumn objects
for all fields of the table with
the same name as
TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the
specified dataset.

PutColumnData Overloaded. Puts the value
of individual columns.

See Also
 TDALoader Class
 TDALoader Class Members

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.3.1 CreateColumns Method

Creates TDAColumn objects for all fields of the table with the same name as
TableName.

Reference 215

© 2013 Enter your company name

Class

TDALoader

Syntax

procedure CreateColumns;

Remarks

Call the CreateColumns method to create TDAColumn objects for all fields of the
table with the same name as TableName. If columns were created before, they will
be recreated. You can call CreateColumns from the component popup menu at
design-time. After you can customize column loading by setting properties of
TDAColumn objects.

See Also

 TDAColumn
 TableName

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.3.2 Load Method

Starts loading data.

Class

TDALoader

Syntax

procedure Load; virtual;

Remarks

Call the Load method to start loading data. At first it is necessary to create columns
and write one of the OnPutData or OnGetColumnData event handlers.

See Also

 OnGetColumnData
 OnPutData

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.3.3 LoadFromDataSet Method

Loads data from the specified dataset.

Class

TDALoader

Universal Data Access Components216

© 2013 Enter your company name

Syntax

procedure LoadFromDataSet(DataSet: TDataSet);
Parameters

DataSet
Holds the dataset to load data from.

Remarks

Call the LoadFromDataSet method to load data from the specified dataset. There is
no need to create columns and write event handlers for OnPutData and
OnGetColumnData before calling this method.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.3.4 PutColumnData Method

Puts the value of individual columns.

Class

TDALoader

Overload List

Name Description

PutColumnData(Col: integer; Row:
integer; const Value: variant)

Puts the value of individual columns by
the column index.

PutColumnData(const ColName:
string; Row: integer; const Value:
variant)

Puts the value of individual columns by
the column name.

© 1997-2013 Devart. All Rights Reserved.

Puts the value of individual columns by the column index.

Class

TDALoader

Syntax

procedure PutColumnData(Col: integer; Row: integer; const Value:
variant); overload; virtual
Parameters

Col
Holds the index of a loading column. The first column has index 0.

Row
Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

Remarks

Reference 217

© 2013 Enter your company name

Call the PutColumnData method to put the value of individual columns. The Col
parameter indicates the index of loading column. The first column has index 0. The
Row parameter indicates the number of the loading row. Row starts from 1.
This overloaded method works faster because it searches the right index by its
index, not by the index name.
The value of a column should be assigned to the Value parameter.

See Also

 TDALoader.OnPutData

© 1997-2013 Devart. All Rights Reserved.

Puts the value of individual columns by the column name.

Class

TDALoader

Syntax

procedure PutColumnData(const ColName: string; Row: integer; const
Value: variant); overload
Parameters

ColName
Hods the name of a loading column.

Row
Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.4 Events

Events of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members
topic.

Public

Name Description

OnGetColumnData Occurs when it is needed to
put column values.

OnProgress Occurs if handling data
loading progress of the
TDALoader.
LoadFromDataSet method is
needed.

OnPutData Occurs when putting loading
data by rows is needed.

Universal Data Access Components218

© 2013 Enter your company name

See Also
 TDALoader Class
 TDALoader Class Members

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.4.1 OnGetColumnData Event

Occurs when it is needed to put column values.

Class

TDALoader

Syntax

property OnGetColumnData: TGetColumnDataEvent;

Remarks

Write the OnGetColumnData event handler to put column values. TDALoader calls
the OnGetColumnData event handler for each column in the loop. Column points to
a TDAColumn object that corresponds to the current loading column. Use its Name
or Index property to identify what column is loading. The Row parameter indicates
the current loading record. TDALoader increments the Row parameter when all the
columns of the current record are loaded. The first row is 1. Set EOF to True to stop
data loading. Fill the Value parameter by column values. To start loading call the
Load method.
Another way to load data is using the OnPutData event.

Example

This handler loads 1000 rows.
procedure TfmMain.GetColumnData(Sender: TObject;
 Column: TDAColumn; Row: Integer; var Value: Variant;
 var EOF: Boolean);
begin
 if Row <= 1000 then begin
 case Column.Index of
 0: Value := Row;
 1: Value := Random(100);
 2: Value := Random*100;
 3: Value := 'abc01234567890123456789';
 4: Value := Date;
 else
 Value := Null;
 end;
 end
 else
 EOF := True;
end;

See Also

Reference 219

© 2013 Enter your company name


OnPutData
 Load

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.4.2 OnProgress Event

Occurs if handling data loading progress of the LoadFromDataSet method is needed.

Class

TDALoader

Syntax

property OnProgress: TLoaderProgressEvent;

Remarks

Add a handler to this event if you want to handle data loading progress of the
LoadFromDataSet method.

See Also

 LoadFromDataSet

© 1997-2013 Devart. All Rights Reserved.

16.8.1.3.4.3 OnPutData Event

Occurs when putting loading data by rows is needed.

Class

TDALoader

Syntax

property OnPutData: TDAPutDataEvent;

Remarks

Write the OnPutData event handler to put loading data by rows.
Note that rows should be loaded from the first in the ascending order.
To start loading, call the Load method.

Example

This handler loads 1000 rows.
procedure TfmMain.PutData(Sender: TDALoader);
var
 Count: Integer;
 i: Integer;
begin
 Count := StrToInt(edRows.Text);
 for i := 1 to Count dobegin

Universal Data Access Components220

© 2013 Enter your company name

 Sender.PutColumnData(0, i, 1);
 Sender.PutColumnData(1, i, Random(100));
 Sender.PutColumnData(2, i, Random*100);
 Sender.PutColumnData(3, i, 'abc01234567890123456789');
 Sender.PutColumnData(4, i, Date);
 end;
end;

See Also


TDALoader.PutColumnData
 Load
 OnGetColumnData

© 1997-2013 Devart. All Rights Reserved.

16.8.2 Types

Types in the DALoader unit.

Types

Name Description

TDAPutDataEvent This type is used for the
TDALoader.OnPutData
event.

TGetColumnDataEvent This type is used for the
TDALoader.
OnGetColumnData event.

TLoaderProgressEvent This type is used for the
TDALoader.OnProgress
event.

© 1997-2013 Devart. All Rights Reserved.

16.8.2.1 TDAPutDataEvent Procedure Reference

This type is used for the TDALoader.OnPutData event.

Unit

DALoader

Syntax

TDAPutDataEvent = procedure (Sender: TDALoader) of object;
Parameters

Sender
An object that raised the event.

© 1997-2013 Devart. All Rights Reserved.

Reference 221

© 2013 Enter your company name

16.8.2.2 TGetColumnDataEvent Procedure Reference

This type is used for the TDALoader.OnGetColumnData event.

Unit

DALoader

Syntax

TGetColumnDataEvent = procedure (Sender: TObject; Column:
TDAColumn; Row: integer; var Value: variant; var IsEOF:
boolean) of object;
Parameters

Sender
An object that raised the event.

Column
Points to TDAColumn object that corresponds to the current loading column.

Row
Indicates the current loading record.

Value
Holds column values.

IsEOF
True, if data loading needs to be stopped.

© 1997-2013 Devart. All Rights Reserved.

16.8.2.3 TLoaderProgressEvent Procedure Reference

This type is used for the TDALoader.OnProgress event.

Unit

DALoader

Syntax

TLoaderProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

Percent
Percentage of the load operation progress.

© 1997-2013 Devart. All Rights Reserved.

16.9 DAScript

This unit contains the base class for the TUniScript component.

Classes

Universal Data Access Components222

© 2013 Enter your company name

Name Description

TDAScript Makes it possible to execute
several SQL statements one
by one.

TDAStatement This class has attributes and
methods for controlling
single SQL statement of a
script.

TDAStatements Holds a collection of
TDAStatement objects.

Types

Name Description

TAfterStatementExecuteEvent This type is used for the
TDAScript.AfterExecute
event.

TBeforeStatementExecuteEvent This type is used for the
TDAScript.BeforeExecute
event.

TOnErrorEvent This type is used for the
TDAScript.OnError event.

Enumerations

Name Description

TErrorAction Indicates the action to take
when the OnError handler
exits.

© 1997-2013 Devart. All Rights Reserved.

16.9.1 Classes

Classes in the DAScript unit.

Classes

Name Description

TDAScript Makes it possible to execute
several SQL statements one
by one.

TDAStatement This class has attributes and
methods for controlling
single SQL statement of a
script.

TDAStatements Holds a collection of
TDAStatement objects.

© 1997-2013 Devart. All Rights Reserved.

Reference 223

© 2013 Enter your company name

16.9.1.1 TDAScript Class

Makes it possible to execute several SQL statements one by one.
For a list of all members of this type, see TDAScript members.

Unit

DAScript

Syntax

TDAScript = class(TComponent);

Remarks

Often it is necessary to execute several SQL statements one by one. This can be
performed using a lot of components such as TCustomDASQL descendants. Usually
it isn't the best solution. With only one TDAScript descedant component you can
execute several SQL statements as one. This sequence of statements is called
script. To separate single statements use semicolon (;) or slash (/) and for
statements that can contain semicolon, only slash. Note that slash must be the first
character in line.
Errors that occur during execution can be processed in the TDAScript.OnError event
handler. By default, on error TDAScript shows exception and continues execution.

See Also

 TCustomDASQL

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.1 Members

TDAScript class overview.

Properties

Name Description

Connection Used to specify the
connection in which the
script will be executed.

DataSet Refers to a dataset that
holds the result set of query
execution.

Debug Used to display the script
execution and all its
parameter values.

Delimiter Used to set the delimiter
string that separates script
statements.

EndLine Used to get the current
statement last line number
in a script.

Universal Data Access Components224

© 2013 Enter your company name

EndOffset Used to get the offset in the
last line of the current
statement.

EndPos Used to get the end position
of the current statement.

Macros Used to change SQL script
text in design- or run-time
easily.

SQL Used to get or set script
text.

StartLine Used to get the current
statement start line number
in a script.

StartOffset Used to get the offset in the
first line of the current
statement.

StartPos Used to get the start
position of the current
statement in a script.

Statements Contains a list of statements
obtained from the SQL
property.

Methods

Name Description

BreakExec Stops script execution.

ErrorOffset Used to get the offset of the
statement if the Execute
method raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements
contained in a file.

ExecuteNext Executes the next statement
in the script and then stops.

ExecuteStream Executes SQL statements
contained in a stream
object.

FindMacro Indicates whether a
specified macro exists in a
dataset.

MacroByName Finds a Macro with the name
passed in Name.

Events

Name Description

AfterExecute Occurs after a SQL script
execution.

Reference 225

© 2013 Enter your company name

BeforeExecute Occurs when taking a
specific action before
executing the current SQL
statement is needed.

OnError Occurs when server raises
an error.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2 Properties

Properties of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members
topic.

Public

Name Description

Connection Used to specify the
connection in which the
script will be executed.

DataSet Refers to a dataset that
holds the result set of query
execution.

EndLine Used to get the current
statement last line number
in a script.

EndOffset Used to get the offset in the
last line of the current
statement.

EndPos Used to get the end position
of the current statement.

StartLine Used to get the current
statement start line number
in a script.

StartOffset Used to get the offset in the
first line of the current
statement.

StartPos Used to get the start
position of the current
statement in a script.

Statements Contains a list of statements
obtained from the SQL
property.

Published

Name Description

Debug Used to display the script
execution and all its
parameter values.

Universal Data Access Components226

© 2013 Enter your company name

Delimiter Used to set the delimiter
string that separates script
statements.

Macros Used to change SQL script
text in design- or run-time
easily.

SQL Used to get or set script
text.

See Also
 TDAScript Class
 TDAScript Class Members

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class

TDAScript

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection in which the script will be
executed. If Connection is not connected, the Execute method calls the Connect
method of Connection.
Set at design-time by selecting from the list of provided TCustomDAConnection
objects.
At run-time, set the Connection property to reference an existing
TCustomDAConnection object.

See Also

 TCustomDAConnection

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.2 DataSet Property

Refers to a dataset that holds the result set of query execution.

Class

TDAScript

Syntax

property DataSet: TCustomDADataSet;

Reference 227

© 2013 Enter your company name

Remarks

Set the DataSet property to retrieve the results of the SELECT statements execution
inside a script.

See Also

 ExecuteNext
 Execute

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.3 Debug Property

Used to display the script execution and all its parameter values.

Class

TDAScript

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display the script execution and all its parameter
values. Also displays the type of parameters.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.4 Delimiter Property

Used to set the delimiter string that separates script statements.

Class

TDAScript

Syntax

property Delimiter: string stored IsDelimiterStored;

Remarks

Use the Delimiter property to set the delimiter string that separates script
statements. By default it is semicolon (;). You can use slash (/) to separate
statements that can contain semicolon if the Delimiter property's default value is
semicolon. Note that slash must be the first character in line.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.5 EndLine Property

Used to get the current statement last line number in a script.

Class

Universal Data Access Components228

© 2013 Enter your company name

TDAScript

Syntax

property EndLine: Int64;

Remarks

Use the EndLine property to get the current statement last line number in a script.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.6 EndOffset Property

Used to get the offset in the last line of the current statement.

Class

TDAScript

Syntax

property EndOffset: Int64;

Remarks

Use the EndOffset property to get the offset in the last line of the current statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.7 EndPos Property

Used to get the end position of the current statement.

Class

TDAScript

Syntax

property EndPos: Int64;

Remarks

Use the EndPos property to get the end position of the current statement (the
position of the last character in the statement) in a script.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.8 Macros Property

Used to change SQL script text in design- or run-time easily.

Class

TDAScript

Syntax

property Macros: TMacros stored False;

Reference 229

© 2013 Enter your company name

Remarks

With the help of macros you can easily change SQL script text in design- or run-
time. Macros extend abilities of parameters and allow changing conditions in the
WHERE clause or sort order in the ORDER BY clause. You just insert &MacroName in
a SQL query text and change value of macro by the Macro property editor in design-
time or the MacroByName function in run-time. In time of opening query macro is
replaced by its value.

See Also

 TMacro
 MacroByName

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.9 SQL Property

Used to get or set script text.

Class

TDAScript

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to get or set script text.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.10 StartLine Property

Used to get the current statement start line number in a script.

Class

TDAScript

Syntax

property StartLine: Int64;

Remarks

Use the StartLine property to get the current statement start line number in a
script.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components230

© 2013 Enter your company name

16.9.1.1.2.11 StartOffset Property

Used to get the offset in the first line of the current statement.

Class

TDAScript

Syntax

property StartOffset: Int64;

Remarks

Use the StartOffset property to get the offset in the first line of the current
statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.12 StartPos Property

Used to get the start position of the current statement in a script.

Class

TDAScript

Syntax

property StartPos: Int64;

Remarks

Use the StartPos property to get the start position of the current statement (the
position of the first statement character) in a script.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.2.13 Statements Property

Contains a list of statements obtained from the SQL property.

Class

TDAScript

Syntax

property Statements: TDAStatements;

Remarks

Contains a list of statements that are obtained from the SQL property. Use the
Access Statements property to view SQL statement, set parameters or execute the
specified statement. Statements is a zero-based array of statement records. Index
specifies the array element to access.
For example, consider the following script:
CREATE TABLE A (FIELD1 INTEGER);
INSERT INTO A VALUES(1);
INSERT INTO A VALUES(2);
INSERT INTO A VALUES(3);

Reference 231

© 2013 Enter your company name

CREATE TABLE B (FIELD1 INTEGER);
INSERT INTO B VALUES(1);
INSERT INTO B VALUES(2);
INSERT INTO B VALUES(3);
Note: The list of statements is created and filled when the value of Statements
property is requested. That's why the first access to the Statements property can
take a long time.

Example

You can use the Statements property in the following way:
procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 with Script do
 begin
 for i := 0 to Statements.Count - 1 do
 if Copy(Statements[i].SQL, 1, 6) <> 'CREATE' then
 Statements[i].Execute;
 end;
end;

See Also


TDAStatements

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3 Methods

Methods of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members
topic.

Public

Name Description

BreakExec Stops script execution.

ErrorOffset Used to get the offset of the
statement if the Execute
method raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements
contained in a file.

ExecuteNext Executes the next statement
in the script and then stops.

ExecuteStream Executes SQL statements
contained in a stream
object.

Universal Data Access Components232

© 2013 Enter your company name

FindMacro Indicates whether a
specified macro exists in a
dataset.

MacroByName Finds a Macro with the name
passed in Name.

See Also
 TDAScript Class
 TDAScript Class Members

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.1 BreakExec Method

Stops script execution.

Class

TDAScript

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to stop script execution.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.2 ErrorOffset Method

Used to get the offset of the statement if the Execute method raised an exception.

Class

TDAScript

Syntax

function ErrorOffset: Int64;
Return Value

offset of an error.

Remarks

Call the ErrorOffset method to get the offset of the statement if the Execute method
raised an exception.

See Also

 OnError

© 1997-2013 Devart. All Rights Reserved.

Reference 233

© 2013 Enter your company name

16.9.1.1.3.3 Execute Method

Executes a script.

Class

TDAScript

Syntax

procedure Execute; virtual;

Remarks

Call the Execute method to execute a script. If server raises an error, the OnError
event occurs.

See Also

 ExecuteNext
 OnError
 ErrorOffset

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.4 ExecuteFile Method

Executes SQL statements contained in a file.

Class

TDAScript

Syntax

procedure ExecuteFile(const FileName: string);
Parameters

FileName
Holds the file name.

Remarks

Call the ExecuteFile method to execute SQL statements contained in a file. Script
doesn't load full content into memory. Reading and execution is performed by
blocks of 64k size. Therefore, it is optimal to use it for big files.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.5 ExecuteNext Method

Executes the next statement in the script and then stops.

Class

TDAScript

Syntax

Universal Data Access Components234

© 2013 Enter your company name

function ExecuteNext: boolean; virtual;
Return Value

True, if there are any statements left in the script, False otherwise.

Remarks

Use the ExecuteNext method to execute the next statement in the script statement
and stop. If server raises an error, the OnError event occurs.

See Also

 Execute
 OnError
 ErrorOffset

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.6 ExecuteStream Method

Executes SQL statements contained in a stream object.

Class

TDAScript

Syntax

procedure ExecuteStream(Stream: TStream);
Parameters

Stream
Holds the stream object from which the statements will be executed.

Remarks

Call the ExecuteStream method to execute SQL statements contained in a stream
object. Reading from the stream and execution is performed by blocks of 64k size.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.7 FindMacro Method

Indicates whether a specified macro exists in a dataset.

Class

TDAScript

Syntax

function FindMacro(Name: string): TMacro;
Parameters

Name
Holds the name of the macro to search for.

Return Value

Reference 235

© 2013 Enter your company name

a TMacro object, if a macro with matching name was found, otherwise returns nil.

Remarks

Call the FindMacro method to determine if a specified macro exists. If FindMacro
finds a macro with a matching name, it returns a TMacro object for the specified
Name. Otherwise it returns nil.

See Also

 TMacro
 Macros
 MacroByName

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.3.8 MacroByName Method

Finds a Macro with the name passed in Name.

Class

TDAScript

Syntax

function MacroByName(Name: string): TMacro;
Parameters

Name
Holds the name of the Macro to search for.

Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a
match was found, MacroByName returns the Macro. Otherwise, an exception is
raised. Use this method rather than a direct reference to the Items property to
avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not
found, use the FindMacro method.
To assign the value of macro use the TMacro.Value property.

See Also

 TMacro
 Macros
 FindMacro

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components236

© 2013 Enter your company name

16.9.1.1.4 Events

Events of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members
topic.

Published

Name Description

AfterExecute Occurs after a SQL script
execution.

BeforeExecute Occurs when taking a
specific action before
executing the current SQL
statement is needed.

OnError Occurs when server raises
an error.

See Also
 TDAScript Class
 TDAScript Class Members

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.4.1 AfterExecute Event

Occurs after a SQL script execution.

Class

TDAScript

Syntax

property AfterExecute: TAfterStatementExecuteEvent;

Remarks

Occurs after a SQL script has been executed.

See Also

 Execute

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.4.2 BeforeExecute Event

Occurs when taking a specific action before executing the current SQL statement is
needed.

Class

TDAScript

Syntax

Reference 237

© 2013 Enter your company name

property BeforeExecute: TBeforeStatementExecuteEvent;

Remarks

Write the BeforeExecute event handler to take specific action before executing the
current SQL statement. SQL holds text of the current SQL statement. Write SQL to
change the statement that will be executed. Set Omit to True to skip statement
execution.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.1.4.3 OnError Event

Occurs when server raises an error.

Class

TDAScript

Syntax

property OnError: TOnErrorEvent;

Remarks

Occurs when server raises an error.
Action indicates the action to take when the OnError handler exits. On entry into the
handler, Action is always set to eaFail.

See Also

 ErrorOffset

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2 TDAStatement Class

This class has attributes and methods for controlling single SQL statement of a
script.
For a list of all members of this type, see TDAStatement members.

Unit

DAScript

Syntax

TDAStatement = class(TCollectionItem);

Remarks

TDAScript contains SQL statements, represented as TDAStatement objects. The
TDAStatement class has attributes and methods for controlling single SQL
statement of a script.

See Also

Universal Data Access Components238

© 2013 Enter your company name

 TDAScript
 TDAStatements

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.1 Members

TDAStatement class overview.

Properties

Name Description

EndLine Used to determine the
number of the last
statement line in a script.

EndOffset Used to get the offset in the
last line of the statement.

EndPos Used to get the end position
of the statement in a script.

Omit Used to avoid execution of a
statement.

Params Contains parasmeters for an
SQL statement.

Script Used to determine the
TDAScript object the SQL
Statement belongs to.

SQL Used to get or set the text of
an SQL statement.

StartLine Used to determine the
number of the first
statement line in a script.

StartOffset Used to get the offset in the
first line of a statement.

StartPos Used to get the start
position of the statement in
a script.

Methods

Name Description

Execute Executes a statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2 Properties

Properties of the TDAStatement class.
For a complete list of the TDAStatement class members, see the TDAStatement
Members topic.

Public

Reference 239

© 2013 Enter your company name

Name Description

EndLine Used to determine the
number of the last
statement line in a script.

EndOffset Used to get the offset in the
last line of the statement.

EndPos Used to get the end position
of the statement in a script.

Omit Used to avoid execution of a
statement.

Params Contains parasmeters for an
SQL statement.

Script Used to determine the
TDAScript object the SQL
Statement belongs to.

SQL Used to get or set the text of
an SQL statement.

StartLine Used to determine the
number of the first
statement line in a script.

StartOffset Used to get the offset in the
first line of a statement.

StartPos Used to get the start
position of the statement in
a script.

See Also
 TDAStatement Class
 TDAStatement Class Members

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.1 EndLine Property

Used to determine the number of the last statement line in a script.

Class

TDAStatement

Syntax

property EndLine: integer;

Remarks

Use the EndLine property to determine the number of the last statement line in a
script.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components240

© 2013 Enter your company name

16.9.1.2.2.2 EndOffset Property

Used to get the offset in the last line of the statement.

Class

TDAStatement

Syntax

property EndOffset: integer;

Remarks

Use the EndOffset property to get the offset in the last line of the statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.3 EndPos Property

Used to get the end position of the statement in a script.

Class

TDAStatement

Syntax

property EndPos: integer;

Remarks

Use the EndPos property to get the end position of the statement (the position of
the last character in the statement) in a script.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.4 Omit Property

Used to avoid execution of a statement.

Class

TDAStatement

Syntax

property Omit: boolean;

Remarks

Set the Omit property to True to avoid execution of a statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.5 Params Property

Contains parasmeters for an SQL statement.

Class

TDAStatement

Reference 241

© 2013 Enter your company name

Syntax

property Params: TDAParams;

Remarks

Contains parameters for an SQL statement.
Access Params at runtime to view and set parameter names, values, and data types
dynamically. Params is a zero-based array of parameter records. Index specifies the
array element to access.

See Also

 TDAParam

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.6 Script Property

Used to determine the TDAScript object the SQL Statement belongs to.

Class

TDAStatement

Syntax

property Script: TDAScript;

Remarks

Use the Script property to determine the TDAScript object the SQL Statement
belongs to.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.7 SQL Property

Used to get or set the text of an SQL statement.

Class

TDAStatement

Syntax

property SQL: string;

Remarks

Use the SQL property to get or set the text of an SQL statement.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components242

© 2013 Enter your company name

16.9.1.2.2.8 StartLine Property

Used to determine the number of the first statement line in a script.

Class

TDAStatement

Syntax

property StartLine: integer;

Remarks

Use the StartLine property to determine the number of the first statement line in a
script.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.9 StartOffset Property

Used to get the offset in the first line of a statement.

Class

TDAStatement

Syntax

property StartOffset: integer;

Remarks

Use the StartOffset property to get the offset in the first line of a statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.2.10 StartPos Property

Used to get the start position of the statement in a script.

Class

TDAStatement

Syntax

property StartPos: integer;

Remarks

Use the StartPos property to get the start position of the statement (the position of
the first statement character) in a script.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.3 Methods

Methods of the TDAStatement class.
For a complete list of the TDAStatement class members, see the TDAStatement
Members topic.

Reference 243

© 2013 Enter your company name

Public

Name Description

Execute Executes a statement.

See Also
 TDAStatement Class
 TDAStatement Class Members

© 1997-2013 Devart. All Rights Reserved.

16.9.1.2.3.1 Execute Method

Executes a statement.

Class

TDAStatement

Syntax

procedure Execute;

Remarks

Use the Execute method to execute a statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.3 TDAStatements Class

Holds a collection of TDAStatement objects.
For a list of all members of this type, see TDAStatements members.

Unit

DAScript

Syntax

TDAStatements = class(TCollection);

Remarks

Each TDAStatements holds a collection of TDAStatement objects. TDAStatements
maintains an index of the statements in its Items array. The Count property
contains the number of statements in the collection. Use TDAStatements class to
manipulate script SQL statements.

See Also

 TDAScript
 TDAStatement

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components244

© 2013 Enter your company name

16.9.1.3.1 Members

TDAStatements class overview.

Properties

Name Description

Items Used to access separate
script statements.

© 1997-2013 Devart. All Rights Reserved.

16.9.1.3.2 Properties

Properties of the TDAStatements class.
For a complete list of the TDAStatements class members, see the TDAStatements
Members topic.

Public

Name Description

Items Used to access separate
script statements.

See Also
 TDAStatements Class
 TDAStatements Class Members

© 1997-2013 Devart. All Rights Reserved.

16.9.1.3.2.1 Items Property(Indexer)

Used to access separate script statements.

Class

TDAStatements

Syntax

property Items[Index: Integer]: TDAStatement; default;
Parameters

Index
Holds the index value.

Remarks

Use the Items property to access individual script statements. The value of the
Index parameter corresponds to the Index property of TDAStatement.

See Also

 TDAStatement

Reference 245

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.9.2 Types

Types in the DAScript unit.

Types

Name Description

TAfterStatementExecuteEvent This type is used for the
TDAScript.AfterExecute
event.

TBeforeStatementExecuteEvent This type is used for the
TDAScript.BeforeExecute
event.

TOnErrorEvent This type is used for the
TDAScript.OnError event.

© 1997-2013 Devart. All Rights Reserved.

16.9.2.1 TAfterStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.AfterExecute event.

Unit

DAScript

Syntax

TAfterStatementExecuteEvent = procedure (Sender: TObject; SQL:
string) of object;
Parameters

Sender
An object that raised the event.

SQL
Holds the passed SQL statement.

© 1997-2013 Devart. All Rights Reserved.

16.9.2.2 TBeforeStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.BeforeExecute event.

Unit

DAScript

Syntax

TBeforeStatementExecuteEvent = procedure (Sender: TObject; var
SQL: string; var Omit: boolean) of object;
Parameters

Sender

Universal Data Access Components246

© 2013 Enter your company name

An object that raised the event.

SQL
Holds the passed SQL statement.

Omit
True, if the statement execution should be skipped.

© 1997-2013 Devart. All Rights Reserved.

16.9.2.3 TOnErrorEvent Procedure Reference

This type is used for the TDAScript.OnError event.

Unit

DAScript

Syntax

TOnErrorEvent = procedure (Sender: TObject; E: Exception; SQL:
string; var Action: TErrorAction) of object;
Parameters

Sender
An object that raised the event.

E
The error code.

SQL
Holds the passed SQL statement.

Action
The action to take when the OnError handler exits.

© 1997-2013 Devart. All Rights Reserved.

16.9.3 Enumerations

Enumerations in the DAScript unit.

Enumerations

Name Description

TErrorAction Indicates the action to take
when the OnError handler
exits.

© 1997-2013 Devart. All Rights Reserved.

16.9.3.1 TErrorAction Enumeration

Indicates the action to take when the OnError handler exits.

Unit

DAScript

Syntax

Reference 247

© 2013 Enter your company name

TErrorAction = (eaAbort, eaFail, eaException, eaContinue);

Values

Value Meaning

eaAbort Abort execution without displaying an error message.

eaContinue Continue execution.

eaException In Delphi 6 and higher exception is handled by the
Application.HandleException method.

eaFail Abort execution and display an error message.

© 1997-2013 Devart. All Rights Reserved.

16.10 DASQLMonitor

This unit contains the base class for the TUniSQLMonitor component.

Classes

Name Description

TCustomDASQLMonitor A base class that introduces
properties and methods to
monitor dynamic SQL
execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

Types

Name Description

TDATraceFlags Represents the set of
TDATraceFlag.

TMonitorOptions Represents the set of
TMonitorOption.

TOnSQLEvent This type is used for the
TCustomDASQLMonitor.
OnSQL event.

Enumerations

Name Description

TDATraceFlag Use TraceFlags to specify
which database operations
the monitor should track in
an application at runtime.

TMonitorOption Used to define where
information from SQLMonitor
will be dispalyed.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components248

© 2013 Enter your company name

16.10.1 Classes

Classes in the DASQLMonitor unit.

Classes

Name Description

TCustomDASQLMonitor A base class that introduces
properties and methods to
monitor dynamic SQL
execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1 TCustomDASQLMonitor Class

A base class that introduces properties and methods to monitor dynamic SQL
execution in database applications interactively.
For a list of all members of this type, see TCustomDASQLMonitor members.

Unit

DASQLMonitor

Syntax

TCustomDASQLMonitor = class(TComponent);

Remarks

TCustomDASQLMonitor is a base class that introduces properties and methods to
monitor dynamic SQL execution in database applications interactively.
TCustomDASQLMonitor provides two ways of displaying debug information. It
monitors either by dialog window or by Borland's proprietary SQL Monitor.
Furthermore to receive debug information use the TCustomDASQLMonitor.OnSQL
event.
In applications use descendants of TCustomDASQLMonitor.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.1 Members

TCustomDASQLMonitor class overview.

Properties

Name Description

Active Used to activate monitoring
of SQL.

DBMonitorOptions Used to set options for
dbMonitor.

Reference 249

© 2013 Enter your company name

Options Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags Used to specify which
database operations the
monitor should track in an
application at runtime.

Events

Name Description

OnSQL Occurs when tracing of SQL
activity on database
components is needed.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.2 Properties

Properties of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the
TCustomDASQLMonitor Members topic.

Public

Name Description

Active Used to activate monitoring
of SQL.

DBMonitorOptions Used to set options for
dbMonitor.

Options Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags Used to specify which
database operations the
monitor should track in an
application at runtime.

See Also
 TCustomDASQLMonitor Class
 TCustomDASQLMonitor Class Members

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.2.1 Active Property

Used to activate monitoring of SQL.

Class

TCustomDASQLMonitor

Syntax

Universal Data Access Components250

© 2013 Enter your company name

property Active: boolean default True;

Remarks

Set the Active property to True to activate monitoring of SQL.

See Also

 OnSQL

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.2.2 DBMonitorOptions Property

Used to set options for dbMonitor.

Class

TCustomDASQLMonitor

Syntax

property DBMonitorOptions: TDBMonitorOptions;

Remarks

Use DBMonitorOptions to set options for dbMonitor.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.2.3 Options Property

Used to include the desired properties for TCustomDASQLMonitor.

Class

TCustomDASQLMonitor

Syntax

property Options: TMonitorOptions default [moDialog, moSQLMonitor,
moDBMonitor, moCustom];

Remarks

Set Options to include the desired properties for TCustomDASQLMonitor.

See Also

 OnSQL

© 1997-2013 Devart. All Rights Reserved.

Reference 251

© 2013 Enter your company name

16.10.1.1.2.4 TraceFlags Property

Used to specify which database operations the monitor should track in an
application at runtime.

Class

TCustomDASQLMonitor

Syntax

property TraceFlags: TDATraceFlags default [tfQPrepare,
tfQExecute, tfError, tfConnect, tfTransact, tfParams, tfMisc];

Remarks

Use the TraceFlags property to specify which database operations the monitor
should track in an application at runtime.

See Also

 OnSQL

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.3 Events

Events of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the
TCustomDASQLMonitor Members topic.

Public

Name Description

OnSQL Occurs when tracing of SQL
activity on database
components is needed.

See Also
 TCustomDASQLMonitor Class
 TCustomDASQLMonitor Class Members

© 1997-2013 Devart. All Rights Reserved.

16.10.1.1.3.1 OnSQL Event

Occurs when tracing of SQL activity on database components is needed.

Class

TCustomDASQLMonitor

Syntax

property OnSQL: TOnSQLEvent;

Remarks

Universal Data Access Components252

© 2013 Enter your company name

Write the OnSQL event handler to let an application trace SQL activity on database
components. The Text parameter holds the detected SQL statement. Use the Flag
parameter to make selective processing of SQL in the handler body.

See Also

 TraceFlags

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2 TDBMonitorOptions Class

This class holds options for dbMonitor.
For a list of all members of this type, see TDBMonitorOptions members.

Unit

DASQLMonitor

Syntax

TDBMonitorOptions = class(TPersistent);

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2.1 Members

TDBMonitorOptions class overview.

Properties

Name Description

Host Used to set the host name
or IP address of the
computer where dbMonitor
application runs.

Port Used to set the port number
for connecting to dbMonitor.

ReconnectTimeout Used to set the minimum
time that should be spent
before reconnecting to
dbMonitor is allowed.

SendTimeout Used to set timeout for
sending events to
dbMonitor.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2.2 Properties

Properties of the TDBMonitorOptions class.
For a complete list of the TDBMonitorOptions class members, see the
TDBMonitorOptions Members topic.

Reference 253

© 2013 Enter your company name

Published

Name Description

Host Used to set the host name
or IP address of the
computer where dbMonitor
application runs.

Port Used to set the port number
for connecting to dbMonitor.

ReconnectTimeout Used to set the minimum
time that should be spent
before reconnecting to
dbMonitor is allowed.

SendTimeout Used to set timeout for
sending events to
dbMonitor.

See Also
 TDBMonitorOptions Class
 TDBMonitorOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2.2.1 Host Property

Used to set the host name or IP address of the computer where dbMonitor
application runs.

Class

TDBMonitorOptions

Syntax

property Host: string;

Remarks

Use the Host property to set the host name or IP address of the computer where
dbMonitor application runs.
dbMonitor supports remote monitoring. You can run dbMonitor on a different
computer than monitored application runs. In this case you need to set the Host
property to the corresponding computer name.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2.2.2 Port Property

Used to set the port number for connecting to dbMonitor.

Class

TDBMonitorOptions

Syntax

Universal Data Access Components254

© 2013 Enter your company name

property Port: integer default DBMonitorPort;

Remarks

Use the Port property to set the port number for connecting to dbMonitor.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2.2.3 ReconnectTimeout Property

Used to set the minimum time that should be spent before reconnecting to
dbMonitor is allowed.

Class

TDBMonitorOptions

Syntax

property ReconnectTimeout: integer default
DefaultReconnectTimeout;

Remarks

Use the ReconnectTimeout property to set the minimum time (in milliseconds) that
should be spent before allowing reconnecting to dbMonitor. If an error occurs when
the component sends an event to dbMonitor (dbMonitor is not running), next events
are ignored and the component does not restore the connection until
ReconnectTimeout is over.

© 1997-2013 Devart. All Rights Reserved.

16.10.1.2.2.4 SendTimeout Property

Used to set timeout for sending events to dbMonitor.

Class

TDBMonitorOptions

Syntax

property SendTimeout: integer default DefaultSendTimeout;

Remarks

Use the SendTimeout property to set timeout (in milliseconds) for sending events to
dbMonitor. If dbMonitor does not respond in the specified timeout, event is ignored.

© 1997-2013 Devart. All Rights Reserved.

16.10.2 Types

Types in the DASQLMonitor unit.

Types

Name Description

Reference 255

© 2013 Enter your company name

TDATraceFlags Represents the set of
TDATraceFlag.

TMonitorOptions Represents the set of
TMonitorOption.

TOnSQLEvent This type is used for the
TCustomDASQLMonitor.
OnSQL event.

© 1997-2013 Devart. All Rights Reserved.

16.10.2.1 TDATraceFlags Set

Represents the set of TDATraceFlag.

Unit

DASQLMonitor

Syntax

TDATraceFlags = set of TDATraceFlag;

© 1997-2013 Devart. All Rights Reserved.

16.10.2.2 TMonitorOptions Set

Represents the set of TMonitorOption.

Unit

DASQLMonitor

Syntax

TMonitorOptions = set of TMonitorOption;

© 1997-2013 Devart. All Rights Reserved.

16.10.2.3 TOnSQLEvent Procedure Reference

This type is used for the TCustomDASQLMonitor.OnSQL event.

Unit

DASQLMonitor

Syntax

TOnSQLEvent = procedure (Sender: TObject; Text: string; Flag:
TDATraceFlag) of object;
Parameters

Sender
An object that raised the event.

Text
Holds the detected SQL statement.

Flag

Universal Data Access Components256

© 2013 Enter your company name

Use the Flag parameter to make selective processing of SQL in the handler body.

© 1997-2013 Devart. All Rights Reserved.

16.10.3 Enumerations

Enumerations in the DASQLMonitor unit.

Enumerations

Name Description

TDATraceFlag Use TraceFlags to specify
which database operations
the monitor should track in
an application at runtime.

TMonitorOption Used to define where
information from SQLMonitor
will be dispalyed.

© 1997-2013 Devart. All Rights Reserved.

16.10.3.1 TDATraceFlag Enumeration

Use TraceFlags to specify which database operations the monitor should track in an
application at runtime.

Unit

DASQLMonitor

Syntax

TDATraceFlag = (tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt,
tfConnect, tfTransact, tfBlob, tfService, tfMisc, tfParams,
tfObjDestroy, tfPool);

Values

Value Meaning

tfBlob This option is declared for future use.

tfConnect Establishing a connection.

tfError Errors of query execution.

tfMisc This option is declared for future use.

tfObjDestroy Destroying of components.

tfParams Representing parameter values for tfQPrepare and
tfQExecute.

tfPool Connection pool operations.

tfQExecute Execution of the queries.

tfQFetch This option is declared for future use.

tfQPrepare Queries preparation.

tfService This option is declared for future use.

tfStmt This option is declared for future use.

tfTransact Processing transactions.

Reference 257

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.10.3.2 TMonitorOption Enumeration

Used to define where information from SQLMonitor will be dispalyed.

Unit

DASQLMonitor

Syntax

TMonitorOption = (moDialog, moSQLMonitor, moDBMonitor, moCustom,
moHandled);

Values

Value Meaning

moCustom Monitoring of SQL for individual components is allowed. Set
Debug properties in SQL-related components to True to let
TCustomDASQLMonitor instance to monitor their behavior.
Has effect when moDialog is included.

moDBMonitor Debug information is displayed in DBMonitor.

moDialog Debug information is displayed in debug window.

moHandled Component handle is included into the event description
string.

moSQLMonitor Debug information is displayed in Borland SQL Monitor.

© 1997-2013 Devart. All Rights Reserved.

16.11 DBAccess

This unit contains base classes for most of the components.

Classes

Name Description

EDAError A base class for exceptions
that are raised when an
error occurs on the server
side.

TCRDataSource Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

TCustomConnectDialog A base class for the connect
dialog components.

TCustomDAConnection A base class for components
used to establish
connections.

Universal Data Access Components258

© 2013 Enter your company name

TCustomDADataSet Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.

TCustomDASQL A base class for components
executing SQL statements
that do not return result
sets.

TCustomDAUpdateSQL A base class for components
that provide DML statements
for more flexible control over
data modifications.

TDAConnectionOptions This class allows setting up
the behaviour of the
TDAConnection class.

TDADataSetOptions This class allows setting up
the behaviour of the
TDADataSet class.

TDAEncryptionOptions Used to specify the options
of the data encryption in a
dataset.

TDAMapRule Class that formes rules for
Data Type Mapping.

TDAMapRules Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

TDAMetaData A class for retrieving
metainformation of the
specified database objects in
the form of dataset.

TDAParam A class that forms objects to
represent the values of the
parameters set.

TDAParams This class is used to manage
a list of TDAParam objects
for an object that uses field
parameters.

TDATransaction A base class that
implements functionality for
controlling transactions.

TMacro Object that represents the
value of a macro.

TMacros Controls a list of TMacro
objects for the
TCustomDASQL.Macros or
TCustomDADataSet
components.

Reference 259

© 2013 Enter your company name

TPoolingOptions This class allows setting up
the behaviour of the
connection pool.

Types

Name Description

TAfterExecuteEvent This type is used for the
TCustomDADataSet.
AfterExecute and
TCustomDASQL.
AfterExecute events.

TAfterFetchEvent This type is used for the
TCustomDADataSet.
AfterFetch event.

TBeforeFetchEvent This type is used for the
TCustomDADataSet.
BeforeFetch event.

TConnectionLostEvent This type is used for the
TCustomDAConnection.
OnConnectionLost event.

TDAConnectionErrorEvent This type is used for the
TCustomDAConnection.
OnError event.

TDATransactionErrorEvent This type is used for the
TDATransaction.OnError
event.

TRefreshOptions Represents the set of
TRefreshOption.

TUpdateExecuteEvent This type is used for the
TCustomDADataSet.
AfterUpdateExecute and
TCustomDADataSet.
BeforeUpdateExecute
events.

Enumerations

Name Description

TLabelSet Sets the languauge of labels
in the connect dialog.

TRefreshOption Indicates when the editing
record will be refreshed.

TRetryMode Specifies the application
behavior when connection is
lost.

Variables

Name Description

Universal Data Access Components260

© 2013 Enter your company name

ChangeCursor When set to True allows
data access components to
change screen cursor for the
execution time.

MacroChar Determinates what character
is used for macros.

© 1997-2013 Devart. All Rights Reserved.

16.11.1 Classes

Classes in the DBAccess unit.

Classes

Name Description

EDAError A base class for exceptions
that are raised when an
error occurs on the server
side.

TCRDataSource Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

TCustomConnectDialog A base class for the connect
dialog components.

TCustomDAConnection A base class for components
used to establish
connections.

TCustomDADataSet Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.

TCustomDASQL A base class for components
executing SQL statements
that do not return result
sets.

TCustomDAUpdateSQL A base class for components
that provide DML statements
for more flexible control over
data modifications.

TDAConnectionOptions This class allows setting up
the behaviour of the
TDAConnection class.

TDADataSetOptions This class allows setting up
the behaviour of the
TDADataSet class.

TDAEncryptionOptions Used to specify the options
of the data encryption in a
dataset.

Reference 261

© 2013 Enter your company name

TDAMapRule Class that formes rules for
Data Type Mapping.

TDAMapRules Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

TDAMetaData A class for retrieving
metainformation of the
specified database objects in
the form of dataset.

TDAParam A class that forms objects to
represent the values of the
parameters set.

TDAParams This class is used to manage
a list of TDAParam objects
for an object that uses field
parameters.

TDATransaction A base class that
implements functionality for
controlling transactions.

TMacro Object that represents the
value of a macro.

TMacros Controls a list of TMacro
objects for the
TCustomDASQL.Macros or
TCustomDADataSet
components.

TPoolingOptions This class allows setting up
the behaviour of the
connection pool.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.1 EDAError Class

A base class for exceptions that are raised when an error occurs on the server side.
For a list of all members of this type, see EDAError members.

Unit

DBAccess

Syntax

EDAError = class(EDatabaseError);

Remarks

EDAError is a base class for exceptions that are raised when an error occurs on the
server side.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components262

© 2013 Enter your company name

16.11.1.1.1 Members

EDAError class overview.

Properties

Name Description

Component Contains the component
that caused the error.

ErrorCode Determines the error code
returned by the server.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.1.2 Properties

Properties of the EDAError class.
For a complete list of the EDAError class members, see the EDAError Members
topic.

Public

Name Description

Component Contains the component
that caused the error.

ErrorCode Determines the error code
returned by the server.

See Also
 EDAError Class
 EDAError Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.1.2.1 Component Property

Contains the component that caused the error.

Class

EDAError

Syntax

property Component: TObject;

Remarks

The Component property contains the component that caused the error.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.1.2.2 ErrorCode Property

Determines the error code returned by the server.

Class

Reference 263

© 2013 Enter your company name

EDAError

Syntax

property ErrorCode: integer;

Remarks

Use the ErrorCode property to determine the error code returned by server. This
value is always positive.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.2 TCRDataSource Class

Provides an interface between a DAC dataset components and data-aware controls
on a form.
For a list of all members of this type, see TCRDataSource members.

Unit

DBAccess

Syntax

TCRDataSource = class(TDataSource);

Remarks

TCRDataSource provides an interface between a DAC dataset components and data-
aware controls on a form.
TCRDataSource inherits its functionality directly from the TDataSource component.
At design time assign individual data-aware components' DataSource properties
from their drop-down listboxes.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.2.1 Members

TCRDataSource class overview.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3 TCustomConnectDialog Class

A base class for the connect dialog components.
For a list of all members of this type, see TCustomConnectDialog members.

Unit

DBAccess

Syntax

TCustomConnectDialog = class(TComponent);

Remarks

TCustomConnectDialog is a base class for the connect dialog components. It
provides functionality to show a dialog box where user can edit username, password

Universal Data Access Components264

© 2013 Enter your company name

and server name before connecting to a database. You can customize captions of
buttons and labels by their properties.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.1 Members

TCustomConnectDialog class overview.

Properties

Name Description

CancelButton Used to specify the label for
the Cancel button.

Caption Used to set the caption of
dialog box.

ConnectButton Used to specify the label for
the Connect button.

DialogClass Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet Used to set the language of
buttons and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries Used to indicate the number
of retries of failed
connections.

SavePassword Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel Used to specify a prompt for
the server name edit.

StoreLogInfo Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel Used to specify a prompt for
username edit.

Methods

Name Description

Execute Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.

GetServerList Retrieves a list of available
server names.

Reference 265

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2 Properties

Properties of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the
TCustomConnectDialog Members topic.

Public

Name Description

CancelButton Used to specify the label for
the Cancel button.

Caption Used to set the caption of
dialog box.

ConnectButton Used to specify the label for
the Connect button.

DialogClass Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet Used to set the language of
buttons and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries Used to indicate the number
of retries of failed
connections.

SavePassword Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel Used to specify a prompt for
the server name edit.

StoreLogInfo Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel Used to specify a prompt for
username edit.

See Also
 TCustomConnectDialog Class
 TCustomConnectDialog Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.1 CancelButton Property

Used to specify the label for the Cancel button.

Class

Universal Data Access Components266

© 2013 Enter your company name

TCustomConnectDialog

Syntax

property CancelButton: string;

Remarks

Use the CancelButton property to specify the label for the Cancel button.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.2 Caption Property

Used to set the caption of dialog box.

Class

TCustomConnectDialog

Syntax

property Caption: string;

Remarks

Use the Caption property to set the caption of dialog box.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.3 ConnectButton Property

Used to specify the label for the Connect button.

Class

TCustomConnectDialog

Syntax

property ConnectButton: string;

Remarks

Use the ConnectButton property to specify the label for the Connect button.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.4 DialogClass Property

Used to specify the class of the form that will be displayed to enter login
information.

Class

TCustomConnectDialog

Syntax

property DialogClass: string;

Reference 267

© 2013 Enter your company name

Remarks

Use the DialogClass property to specify the class of the form that will be displayed
to enter login information. When this property is blank, TCustomConnectDialog uses
the default form - TConnectForm. You can write your own login form to enter login
information and assign its class name to the DialogClass property. Each login form
must have ConnectDialog: TCustomConnectDialog published property to access
connection information. For details see the implementation of the connect form
which sources are in the Lib subdirectory of the UniDAC installation directory.

See Also

 GetServerList

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.5 LabelSet Property

Used to set the language of buttons and labels captions.

Class

TCustomConnectDialog

Syntax

property LabelSet: TLabelSet default lsEnglish;

Remarks

Use the LabelSet property to set the language of labels and buttons captions.
The default value is lsEnglish.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.6 PasswordLabel Property

Used to specify a prompt for password edit.

Class

TCustomConnectDialog

Syntax

property PasswordLabel: string;

Remarks

Use the PasswordLabel property to specify a prompt for password edit.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components268

© 2013 Enter your company name

16.11.1.3.2.7 Retries Property

Used to indicate the number of retries of failed connections.

Class

TCustomConnectDialog

Syntax

property Retries: word default 3;

Remarks

Use the Retries property to determine the number of retries of failed connections.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.8 SavePassword Property

Used for the password to be displayed in ConnectDialog in asterisks.

Class

TCustomConnectDialog

Syntax

property SavePassword: boolean default False;

Remarks

If True, and the Password property of the connection instance is assigned, the
password in ConnectDialog is displayed in asterisks.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.9 ServerLabel Property

Used to specify a prompt for the server name edit.

Class

TCustomConnectDialog

Syntax

property ServerLabel: string;

Remarks

Use the ServerLabel property to specify a prompt for the server name edit.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.10 StoreLogInfo Property

Used to specify whether the login information should be kept in system registry
after a connection was established.

Class

Reference 269

© 2013 Enter your company name

TCustomConnectDialog

Syntax

property StoreLogInfo: boolean default True;

Remarks

Use the StoreLogInfo property to specify whether to keep login information in
system registry after a connection was established using provided username,
password and servername.
Set this property to True to store login information.
The default value is True.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.2.11 UsernameLabel Property

Used to specify a prompt for username edit.

Class

TCustomConnectDialog

Syntax

property UsernameLabel: string;

Remarks

Use the UsernameLabel property to specify a prompt for username edit.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.3 Methods

Methods of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the
TCustomConnectDialog Members topic.

Public

Name Description

Execute Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.

GetServerList Retrieves a list of available
server names.

See Also
 TCustomConnectDialog Class
 TCustomConnectDialog Class Members

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components270

© 2013 Enter your company name

16.11.1.3.3.1 Execute Method

Displays the connect dialog and calls the connection's Connect method when user
clicks the Connect button.

Class

TCustomConnectDialog

Syntax

function Execute: boolean; virtual;
Return Value

True, if connected.

Remarks

Displays the connect dialog and calls the connection's Connect method when user
clicks the Connect button. Returns True if connected. If user clicks Cancel, Execute
returns False.
In the case of failed connection Execute offers to connect repeat Retries times.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.3.3.2 GetServerList Method

Retrieves a list of available server names.

Class

TCustomConnectDialog

Syntax

procedure GetServerList(List: _TStrings); virtual;
Parameters

List
Holds a list of available server names.

Remarks

Call the GetServerList method to retrieve a list of available server names. It is
particularly relevant for writing custom login form.

See Also

 DialogClass

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4 TCustomDAConnection Class

A base class for components used to establish connections.
For a list of all members of this type, see TCustomDAConnection members.

Unit

Reference 271

© 2013 Enter your company name

DBAccess

Syntax

TCustomDAConnection = class(TCustomConnection);

Remarks

TCustomDAConnection is a base class for components that establish connection with
database, provide customised login support, and perform transaction control.
Do not create instances of TCustomDAConnection. To add a component that
represents a connection to a source of data, use descendants of the
TCustomDAConnection class.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.1 Members

TCustomDAConnection class overview.

Properties

Name Description

ConnectDialog Allows to link a
TCustomConnectDialog
component.

ConvertEOL Allows customizing line
breaks in string fields and
parameters.

InTransaction Indicates whether the
transaction is active.

LoginPrompt Specifies whether a login
dialog appears immediately
before opening a new
connection.

Options Specifies the connection
behavior.

Password Serves to supply a password
for login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server
name for login.

Username Used to supply a user name
for login.

Methods

Name Description

ApplyUpdates Overloaded. Applies changes
in datasets.

Universal Data Access Components272

© 2013 Enter your company name

Commit Commits current
transaction.

Connect Establishes a connection to
the server.

CreateDataSet Creates a dataset
component.

CreateSQL Creates a component for
queries execution.

Disconnect Performs disconnect.

ExecProc Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSQL Executes a SQL statement
with parameters.

ExecSQLEx Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames Returns a database list from
the server.

GetStoredProcNames Returns a list of stored
procedures from the server.

GetTableNames Provides a list of available
tables names.

MonitorMessage Sends a specified message
through the
TCustomDASQLMonitor
component.

RemoveFromPool Marks the connection that
should not be returned to
the pool after disconnect.

Rollback Discards all current data
changes and ends
transaction.

StartTransaction Begins a new user
transaction.

Events

Name Description

OnConnectionLost This event occurs when
connection was lost.

OnError This event occurs when an
error has arisen in the
connection.

© 1997-2013 Devart. All Rights Reserved.

Reference 273

© 2013 Enter your company name

16.11.1.4.2 Properties

Properties of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the
TCustomDAConnection Members topic.

Public

Name Description

ConnectDialog Allows to link a
TCustomConnectDialog
component.

ConvertEOL Allows customizing line
breaks in string fields and
parameters.

InTransaction Indicates whether the
transaction is active.

LoginPrompt Specifies whether a login
dialog appears immediately
before opening a new
connection.

Options Specifies the connection
behavior.

Password Serves to supply a password
for login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server
name for login.

Username Used to supply a user name
for login.

See Also
 TCustomDAConnection Class
 TCustomDAConnection Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.1 ConnectDialog Property

Allows to link a TCustomConnectDialog component.

Class

TCustomDAConnection

Syntax

property ConnectDialog: TCustomConnectDialog;

Remarks

Universal Data Access Components274

© 2013 Enter your company name

Use the ConnectDialog property to assign to connection a TCustomConnectDialog
component.

See Also

 TCustomConnectDialog

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.2 ConvertEOL Property

Allows customizing line breaks in string fields and parameters.

Class

TCustomDAConnection

Syntax

property ConvertEOL: boolean default False;

Remarks

Affects the line break behavior in string fields and parameters. When fetching
strings (including the TEXT fields) with ConvertEOL = True, dataset converts their
line breaks from the LF to CRLF form. And when posting strings to server with
ConvertEOL turned on, their line breaks are converted from CRLF to LF form. By
default, strings are not converted.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.3 InTransaction Property

Indicates whether the transaction is active.

Class

TCustomDAConnection

Syntax

property InTransaction: boolean;

Remarks

Examine the InTransaction property at runtime to determine whether user
transaction is currently in progress. In other words InTransaction is set to True
when user explicitly calls StartTransaction. Calling Commit or Rollback sets
InTransaction to False. The value of the InTransaction property cannot be changed
directly.

See Also

 StartTransaction
 Commit

Reference 275

© 2013 Enter your company name

 Rollback

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.4 LoginPrompt Property

Specifies whether a login dialog appears immediately before opening a new
connection.

Class

TCustomDAConnection

Syntax

property LoginPrompt default True;

Remarks

Specifies whether a login dialog appears immediately before opening a new
connection. If ConnectDialog is not specified, the default connect dialog will be
shown. The connect dialog will appear only if the UniDacVcl unit appears to the uses
clause.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.5 Options Property

Specifies the connection behavior.

Class

TCustomDAConnection

Syntax

property Options: TDAConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of the connection.
Descriptions of all options are in the table below.

Option Name Description

DefaultSortType Used to determine the default type of
local sorting for string fields. It is used
when a sort type is not specified
explicitly after the field name in the
TMemDataSet.IndexFieldNames
property of a dataset.

DisconnectedMode Used to open a connection only when
needed for performing a server call and
closes after performing the operation.

KeepDesignConnected Used to prevent an application from
establishing a connection at the time of
startup.

Universal Data Access Components276

© 2013 Enter your company name

LocalFailover If True, the OnConnectionLost event
occurs and a failover operation can be
performed after connection breaks.

See Also


Disconnected Mode


Working in an Unstable Network

©

 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.6 Password Property

Serves to supply a password for login.

Class

TCustomDAConnection

Syntax

property Password: string;

Remarks

Use the Password property to supply a password to handle server's request for a
login.
Warning: Storing hard-coded user name and password entries as property values
or in code for the OnLogin event handler can compromise server security.

See Also

 Username
 Server

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.7 Pooling Property

Enables or disables using connection pool.

Class

TCustomDAConnection

Syntax

property Pooling: boolean default False;

Reference 277

© 2013 Enter your company name

Remarks

Normally, when TCustomDAConnection establishes connection with the server it
takes server memory and time resources for allocating new server connection. For
example, pooling can be very useful when using disconnect mode. If an application
has wide user activity that forces many connect/disconnect operations, it may
spend a lot of time on creating connection and sending requests to the server.
TCustomDAConnection has software pool which stores open connections with
identical parameters.
Connection pool uses separate thread that validates the pool every 30 seconds. Pool
validation consists of checking each connection in the pool. If a connection is broken
due to a network problem or another reason, it is deleted from the pool. The
validation procedure removes also connections that are not used for a long time
even if they are valid from the pool.
Set Pooling to True to enable pooling. Specify correct values for PoolingOptions. Two
connections belong to the same pool if they have identical values for the
parameters: MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime.
Note: Using Pooling := True can cause errors with working with temporary tables.

See Also

 Username
 Password
 PoolingOptions
 A:work_pooling

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.8 PoolingOptions Property

Specifies the behaviour of connection pool.

Class

TCustomDAConnection

Syntax

property PoolingOptions: TPoolingOptions;

Remarks

Set the properties of PoolingOptions to specify the behaviour of connection pool.
Descriptions of all options are in the table below.

Option Name Description

ConnectionLifetime Used to specify the maximum time
during which an opened connection can
be used by connection pool.

MaxPoolSize Used to specify the maximum number
of connections that can be opened in
connection pool.

Universal Data Access Components278

© 2013 Enter your company name

MinPoolSize Used to specify the minimum number
of connections that can be opened in
the connection pool.

Validate Used for a connection to be validated
when it is returned from the pool.

See Also


Pooling

©

 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.9 Server Property

Serves to supply the server name for login.

Class

TCustomDAConnection

Syntax

property Server: string;

Remarks

Use the Server property to supply server name to handle server's request for a
login.

See Also

 Username
 Password

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.2.10 Username Property

Used to supply a user name for login.

Class

TCustomDAConnection

Syntax

property Username: string;

Remarks

Use the Username property to supply a user name to handle server's request for

Reference 279

© 2013 Enter your company name

login. If this property is not set, UniDAC tries to connect with the user name.
Warning: Storing hard-coded user name and password entries as property values
or in code for the OnLogin event handler can compromise server security.

See Also

 Password
 Server

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3 Methods

Methods of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the
TCustomDAConnection Members topic.

Public

Name Description

ApplyUpdates Overloaded. Applies changes
in datasets.

Commit Commits current
transaction.

Connect Establishes a connection to
the server.

CreateDataSet Creates a dataset
component.

CreateSQL Creates a component for
queries execution.

Disconnect Performs disconnect.

ExecProc Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSQL Executes a SQL statement
with parameters.

ExecSQLEx Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames Returns a database list from
the server.

GetStoredProcNames Returns a list of stored
procedures from the server.

GetTableNames Provides a list of available
tables names.

Universal Data Access Components280

© 2013 Enter your company name

MonitorMessage Sends a specified message
through the
TCustomDASQLMonitor
component.

RemoveFromPool Marks the connection that
should not be returned to
the pool after disconnect.

Rollback Discards all current data
changes and ends
transaction.

StartTransaction Begins a new user
transaction.

See Also
 TCustomDAConnection Class
 TCustomDAConnection Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.1 ApplyUpdates Method

Applies changes in datasets.

Class

TCustomDAConnection

Overload List

Name Description

ApplyUpdates Applies changes from all active
datasets.

ApplyUpdates(DataSets: array of
TCustomDADataSet)

Applies changes from the specified
datasets.

© 1997-2013 Devart. All Rights Reserved.

Applies changes from all active datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyUpdates; overload; virtual

Remarks

Call the ApplyUpdates method to write all pending cached updates from all active
datasets attached to this connection to a database or from specific datasets. The
ApplyUpdates method passes cached data to the database for storage, takes care of
committing or rolling back transactions, and clearing the cache when the operation
is successful.
Using ApplyUpdates for connection is a preferred method of updating datasets

Reference 281

© 2013 Enter your company name

rather than calling each individual dataset's ApplyUpdates method.

See Also

 TMemDataSet.CachedUpdates
 TMemDataSet.ApplyUpdates

© 1997-2013 Devart. All Rights Reserved.

Applies changes from the specified datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyUpdates(DataSets: array of TCustomDADataSet);
overload; virtual
Parameters

DataSets
A list of datasets changes in which are to be applied.

Remarks

Call the ApplyUpdates method to write all pending cached updates from the
specified datasets. The ApplyUpdates method passes cached data to the database
for storage, takes care of committing or rolling back transactions and clearing the
cache when operation is successful.
Using ApplyUpdates for connection is a preferred method of updating datasets
rather than calling each individual dataset's ApplyUpdates method.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.2 Commit Method

Commits current transaction.

Class

TCustomDAConnection

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit current transaction. On commit server writes
permanently all pending data updates associated with the current transaction to the
database and then ends the transaction. The current transaction is the last
transaction started by calling StartTransaction.

See Also

Universal Data Access Components282

© 2013 Enter your company name

 Rollback
 StartTransaction
 TCustomUniDataSet.SpecificOptions

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.3 Connect Method

Establishes a connection to the server.

Class

TCustomDAConnection

Syntax

procedure Connect;

Remarks

Call the Connect method to establish a connection to the server. Connect sets the
Connected property to True. If LoginPrompt is True, Connect prompts user for login
information as required by the server, or otherwise tries to establish a connection
using values provided in the Username, Password, and Server properties.

See Also

 Disconnect
 Username
 Password
 Server
 ConnectDialog

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.4 CreateDataSet Method

Creates a dataset component.

Class

TCustomDAConnection

Syntax

function CreateDataSet: TCustomDADataSet; virtual;
Return Value

Returns a new instance of the class.

Remarks

Call the CreateDataSet method to return a new instance of the TCustomDADataSet
class and associate it with this connection object. In the descendant classes this
method should be overridden to create an appropriate descendant of the
TCustomDADataset component.

Reference 283

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.5 CreateSQL Method

Creates a component for queries execution.

Class

TCustomDAConnection

Syntax

function CreateSQL: TCustomDASQL; virtual;
Return Value

A new instance of the class.

Remarks

Call the CreateSQL to return a new instance of the TCustomDASQL class and
associates it with this connection object. In the descendant classes this method
should be overridden to create an appropriate descendant of the TCustomDASQL
component.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.6 Disconnect Method

Performs disconnect.

Class

TCustomDAConnection

Syntax

procedure Disconnect;

Remarks

Call the Disconnect method to drop a connection to database. Before the connection
component is deactivated, all associated datasets are closed. Calling Disconnect is
similar to setting the Connected property to False.
In most cases, closing a connection frees system resources allocated to the
connection.
If user transaction is active, e.g. the InTransaction flag is set, calling to Disconnect
the current user transaction.
Note: If a previously active connection is closed and then reopened, any associated
datasets must be individually reopened; reopening the connection does not
automatically reopen associated datasets.

See Also

 Connect

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components284

© 2013 Enter your company name

16.11.1.4.3.7 ExecProc Method

Allows to execute stored procedure or function providing its name and parameters.

Class

TCustomDAConnection

Syntax

function ExecProc(Name: string; const Params: array of variant):
variant; virtual;
Parameters

Name
Holds the name of the stored procedure or function.

Params
Holds the parameters of the stored procedure or function.

Return Value

the result of the stored procedure.

Remarks

Allows to execute stored procedure or function providing its name and parameters.
Use the following Name value syntax for executing specific overloaded routine:
"StoredProcName:1" or "StoredProcName:5". The first example executes the first
overloaded stored procedure, while the second example executes the fifth
overloaded procedure.
Assign parameters' values to the Params array in exactly the same order and
number as they appear in the stored procedure declaration. Out parameters of the
procedure can be accessed with the ParamByName procedure.
If the value of an input parameter was not included to the Params array, parameter
default value is taken. Only parameters at the end of the list can be unincluded to
the Params array. If the parameter has no default value, the NULL value is sent.
Note: Stored functions unlike stored procedures return result values that are
obtained internally through the RESULT parameter. You will no longer have to
provide anonymous value in the Params array to describe the result of the function.
The stored function result is obtained from the Params[0] indexed property or with
the ParamByName('RESULT') method call.
For further examples of parameter usage see ExecSQL, ExecSQLEx.

Example

For example, having stored function declaration presented in Example 1), you may
execute it and retrieve its result with commands presented in Example 2):
Example 1)
CREATE procedure MY_SUM (
 A INTEGER,
 B INTEGER)
RETURNS (
 RESULT INTEGER)
as
begin
 Result = a + b;

Reference 285

© 2013 Enter your company name

end;
Example 2)
Label1.Caption:= MyUniConnection1.ExecProc('My_Sum', [10, 20]);
Label2.Caption:= MyUniConnection1.ParamByName('Result').AsString;

See Also


ExecProcEx
 ExecSQL
 ExecSQLEx

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.8 ExecProcEx Method

Allows to execute a stored procedure or function.

Class

TCustomDAConnection

Syntax

function ExecProcEx(Name: string; const Params: array of variant):
variant; virtual;
Parameters

Name
Holds the stored procedure name.

Params
Holds an array of pairs of parameters' names and values.

Return Value

the result of the stored procedure.

Remarks

Allows to execute a stored procedure or function. Provide the stored procedure
name and its parameters to the call of ExecProcEx.
Use the following Name value syntax for executing specific overloaded routine:
"StoredProcName:1" or "StoredProcName:5". The first example executes the first
overloaded stored procedure, while the second example executes the fifth
overloaded procedure.
Assign pairs of parameters' names and values to a Params array so that every name
comes before its corresponding value when an array is being indexed.
Out parameters of the procedure can be accessed with the ParamByName
procedure. If the value for an input parameter was not included to the Params
array, the parameter default value is taken. If the parameter has no default value,
the NULL value is sent.
Note: Stored functions unlike stored procedures return result values that are
obtained internally through the RESULT parameter. You will no longer have to
provide anonymous value in the Params array to describe the result of the function.
Stored function result is obtained from the Params[0] indexed property or with the

Universal Data Access Components286

© 2013 Enter your company name

ParamByName('RESULT') method call.
For an example of parameters usage see ExecSQLEx.

Example

If you have some stored procedure accepting four parameters, and you want to
provide values only for the first and fourth parameters, you should call ExecProcEx
in the following way:
Connection.ExecProcEx('Some_Stored_Procedure', ['Param_Name1', 'Param_Value1', 'Param_Name4', 'Param_Value4']);

See Also


ExecSQL
 ExecSQLEx
 ExecProc

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.9 ExecSQL Method

Executes a SQL statement with parameters.

Class

TCustomDAConnection

Syntax

function ExecSQL(Text: string): variant; overload;function ExecSQL
(Text: string; const Params: array of variant): variant;
overload; virtual;
Parameters

Text
a SQL statement to be executed.

Params
Array of parameter values arranged in the same order as they appear in SQL
statement.

Return Value

Out parameter with the name Result will hold the result of function having data
type dtString. Otherwise returns Null.

Remarks

Use the ExecSQL method to execute any SQL statement outside the
TCustomDADataSet or TCustomDASQL components. Supply the Params array with
the values of parameters arranged in the same order as they appear in a SQL
statement which itself is passed to the Text string parameter.

Reference 287

© 2013 Enter your company name

See Also

 ExecSQLEx
 ExecProc

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.10 ExecSQLEx Method

Executes any SQL statement outside the TQuery or TSQL components.

Class

TCustomDAConnection

Syntax

function ExecSQLEx(Text: string; const Params: array of variant):
variant; virtual;
Parameters

Text
a SQL statement to be executed.

Params
Array of parameter values arranged in the same order as they appear in SQL
statement.

Return Value

Out parameter with the name Result will hold the result of a function having data
type dtString. Otherwise returns Null.

Remarks

Call the ExecSQLEx method to execute any SQL statement outside the TQuery or
TSQL components. Supply the Params array with values arranged in pairs of
parameter name and its value. This way each parameter name in the array is found
on even index values whereas parameter value is on odd index value but right after
its parameter name. The parameter pairs must be arranged according to their
occurrence in a SQL statement which itself is passed in the Text string parameter.
The Params array must contain all IN and OUT parameters defined in the SQL
statement. For OUT parameters provide any values of valid types so that they are
explicitly defined before call to the ExecSQLEx method.
Out parameter with the name Result will hold the result of a function having data
type dtString. If neither of the parameters in the Text statement is named Result,
ExecSQLEx will return Null.
To get the values of OUT parameters use the ParamByName function.

Example

UniConnection.ExecSQLEx('begin :A:= :B + :C; end;',
 ['A', 0, 'B', 5, 'C', 3]);
A:= UniConnection.ParamByName('A').AsInteger;

Universal Data Access Components288

© 2013 Enter your company name

See Also


ExecSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.11 GetDatabaseNames Method

Returns a database list from the server.

Class

TCustomDAConnection

Syntax

procedure GetDatabaseNames(List: _TStrings); virtual;
Parameters

List
A TStrings descendant that will be filled with database names.

Remarks

Populates a string list with the names of databases.
Note: Any contents already in the target string list object are eliminated and
overwritten by data produced by GetDatabaseNames.

See Also

 GetTableNames
 GetStoredProcNames

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.12 GetStoredProcNames Method

Returns a list of stored procedures from the server.

Class

TCustomDAConnection

Syntax

procedure GetStoredProcNames(List: _TStrings; AllProcs: boolean =
False); virtual;
Parameters

List
A TStrings descendant that will be filled with the names of stored procedures in
the database.

AllProcs
True, if stored procedures from all schemas or including system procudures

Reference 289

© 2013 Enter your company name

(depending on the server) are returned. False otherwise.

Remarks

Call the GetStoredProcNames method to get the names of available stored
procedures and functions. GetStoredProcNames populates a string list with the
names of stored procs in the database. If AllProcs = True, the procedure returns to
the List parameter the names of the stored procedures that belong to all schemas;
otherwise, List will contain the names of functions that belong to the current
schema.
Note: Any contents already in the target string list object are eliminated and
overwritten by data produced by GetStoredProcNames.

See Also

 GetDatabaseNames
 GetTableNames

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.13 GetTableNames Method

Provides a list of available tables names.

Class

TCustomDAConnection

Syntax

procedure GetTableNames(List: _TStrings; AllTables: boolean =
False; OnlyTables: boolean = False); virtual;
Parameters

List
A TStrings descendant that will be filled with table names.

AllTables
True, if procedure returns all table names including the names of system tables to
the List parameter.

OnlyTables

Remarks

Call the GetTableNames method to get the names of available tables. Populates a
string list with the names of tables in the database. If AllTables = True, procedure
returns all table names including the names of system tables to the List parameter,
otherwise List will not contain the names of system tables. If AllTables = True, the
procedure returns to the List parameter the names of the tables that belong to all
schemas; otherwise, List will contain the names of the tables that belong to the
current schema.
Note: Any contents already in the target string list object are eliminated and
overwritten by the data produced by GetTableNames.

Universal Data Access Components290

© 2013 Enter your company name

See Also

 GetDatabaseNames
 GetStoredProcNames

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.14 MonitorMessage Method

Sends a specified message through the TCustomDASQLMonitor component.

Class

TCustomDAConnection

Syntax

procedure MonitorMessage(const Msg: string);
Parameters

Msg
Message text that will be sent.

Remarks

Call the MonitorMessage method to output specified message via the
TCustomDASQLMonitor component.

See Also

 TCustomDASQLMonitor

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.15 RemoveFromPool Method

Marks the connection that should not be returned to the pool after disconnect.

Class

TCustomDAConnection

Syntax

procedure RemoveFromPool;

Remarks

Call the RemoveFromPool method to mark the connection that should be deleted
after disconnect instead of returning to the connection pool.

See Also

 Pooling
 PoolingOptions

Reference 291

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.16 Rollback Method

Discards all current data changes and ends transaction.

Class

TCustomDAConnection

Syntax

procedure Rollback; virtual;

Remarks

Call the Rollback method to discard all updates, insertions, and deletions of data
associated with the current transaction to the database server and then end the
transaction. The current transaction is the last transaction started by calling
StartTransaction.

See Also

 Commit
 StartTransaction
 TCustomUniDataSet.SpecificOptions

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.3.17 StartTransaction Method

Begins a new user transaction.

Class

TCustomDAConnection

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new user transaction against the
database server. Before calling StartTransaction, an application should check the
status of the InTransaction property. If InTransaction is True, indicating that a
transaction is already in progress, a subsequent call to StartTransaction without
first calling Commit or Rollback to end the current transaction raises
EDatabaseError. Calling StartTransaction when connection is closed also raises
EDatabaseError.
Updates, insertions, and deletions that take place after a call to StartTransaction
are held by the server until an application calls Commit to save the changes, or
Rollback to cancel them.

Universal Data Access Components292

© 2013 Enter your company name

See Also

 Commit
 Rollback
 InTransaction

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.4 Events

Events of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the
TCustomDAConnection Members topic.

Public

Name Description

OnConnectionLost This event occurs when
connection was lost.

OnError This event occurs when an
error has arisen in the
connection.

See Also
 TCustomDAConnection Class
 TCustomDAConnection Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.4.1 OnConnectionLost Event

This event occurs when connection was lost.

Class

TCustomDAConnection

Syntax

property OnConnectionLost: TConnectionLostEvent;

Remarks

Write the OnConnectionLost event handler to process fatal errors and perform
failover.
Note: you should explicitly add the MemData unit to the 'uses' list to use the
OnConnectionLost event handler.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.4.4.2 OnError Event

This event occurs when an error has arisen in the connection.

Class

Reference 293

© 2013 Enter your company name

TCustomDAConnection

Syntax

property OnError: TDAConnectionErrorEvent;

Remarks

Write the OnError event handler to respond to errors that arise with connection.
Check the E parameter to get the error code. Set the Fail parameter to False to
prevent an error dialog from being displayed and to raise the EAbort exception to
cancel current operation. The default value of Fail is True.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5 TCustomDADataSet Class

Encapsulates general set of properties, events, and methods for working with data
accessed through various database engines.
For a list of all members of this type, see TCustomDADataSet members.

Unit

DBAccess

Syntax

TCustomDADataSet = class(TMemDataSet);

Remarks

TCustomDADataSet encapsulates general set of properties, events, and methods for
working with data accessed through various database engines. All database-specific
features are supported by descendants of TCustomDADataSet.
Applications should not use TCustomDADataSet objects directly.

Inheritance Hierarchy

TMemDataSet
 TCustomDADataSet

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.1 Members

TCustomDADataSet class overview.

Properties

Name Description

BaseSQL Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Universal Data Access Components294

© 2013 Enter your company name

Connection Used to specify a connection
object to use to connect to a
data store.

Debug Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DetailFields Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected Used to keep dataset opened
after connection is closed.

Encryption Used to specify the options
of the data encryption in a
dataset.

FetchRows Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery Used to check whether SQL
statement returns rows.

KeyFields Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Reference 295

© 2013 Enter your company name

MacroCount Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

MasterFields Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource Used to specify the data
source component which
binds current dataset to the
master one.

Options Used to specify the
behaviour of
TCustomDADataSet object.

ParamCheck Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount Used to indicate how many
parameters are there in the
Params property.

Params Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions Used to indicate when the
editing record is refreshed.

RowsAffected Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

Universal Data Access Components296

© 2013 Enter your company name

SQLInsert Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLUpdate Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional Used if an application does
not need bidirectional access
to records in the result set.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

AddWhere Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec Breaks execution of the SQL
statement on the server.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Reference 297

© 2013 Enter your company name

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Execute Executes a SQL statement
on the server.

Executing Indicates whether SQL
statement is still being
executed.

Fetched Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey Searches for a record which
contains specified field
values.

FindMacro Indicates whether a
specified macro exists in a
dataset.

FindNearest Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject Returns a multireference
shared object from field.

GetFieldPrecision Retrieves the precision of a
number field.

GetFieldScale Retrieves the scale of a
number field.

Universal Data Access Components298

© 2013 Enter your company name

GetOrderBy Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock Locks the current record.

MacroByName Finds a Macro with the name
passed in Name.

ParamByName Sets or uses parameter
information for a specific
parameter based on its
name.

Prepare Allocates, opens, and parses
cursor for a query.

RefreshRecord Actualizes field values for
the current record.

RestoreSQL Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveSQL Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Reference 299

© 2013 Enter your company name

SetOrderBy Builds an ORDER BY clause
of a SELECT statement.

SQLSaved Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

AfterExecute Occurs after a component
has executed a query to
database.

AfterFetch Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2 Properties

Properties of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the
TCustomDADataSet Members topic.

Universal Data Access Components300

© 2013 Enter your company name

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Connection Used to specify a connection
object to use to connect to a
data store.

Debug Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DetailFields Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected Used to keep dataset opened
after connection is closed.

Encryption Used to specify the options
of the data encryption in a
dataset.

FetchRows Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

Reference 301

© 2013 Enter your company name

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery Used to check whether SQL
statement returns rows.

KeyFields Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

MacroCount Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

MasterFields Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource Used to specify the data
source component which
binds current dataset to the
master one.

Universal Data Access Components302

© 2013 Enter your company name

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Options Used to specify the
behaviour of
TCustomDADataSet object.

ParamCheck Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount Used to indicate how many
parameters are there in the
Params property.

Params Used to view and set
parameter names, values,
and data types dynamically.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions Used to indicate when the
editing record is refreshed.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Reference 303

© 2013 Enter your company name

SQL Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLUpdate Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional Used if an application does
not need bidirectional access
to records in the result set.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TCustomDADataSet Class
 TCustomDADataSet Class Members

Universal Data Access Components304

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.1 BaseSQL Property

Used to return SQL text without any changes performed by AddWhere, SetOrderBy,
and FilterSQL.

Class

TCustomDADataSet

Syntax

property BaseSQL: string;

Remarks

Use the BaseSQL property to return SQL text without any changes performed by
AddWhere, SetOrderBy, and FilterSQL, only macros are expanded. SQL text with all
these changes can be returned by FinalSQL.

See Also

 FinalSQL
 AddWhere
 SaveSQL
 SQLSaved
 RestoreSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.2 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TCustomDADataSet

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to
connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or
its descendant class objects.
At runtime, link an instance of a TCustomDAConnection descendant to the
Connection property.

© 1997-2013 Devart. All Rights Reserved.

Reference 305

© 2013 Enter your company name

16.11.1.5.2.3 Debug Property

Used to display executing statement, all its parameters' values, and the type of
parameters.

Class

TCustomDADataSet

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its
parameters' values. Also displays the type of parameters.
You should add the UniDACVcl unit to the uses clause of any unit in your project to
make the Debug property work.

See Also

 TCustomDASQL.Debug

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.4 DetailFields Property

Used to specify the fields that correspond to the foreign key fields from MasterFields
when building master/detail relationship.

Class

TCustomDADataSet

Syntax

property DetailFields: string;

Remarks

Use the DetailFields property to specify the fields that correspond to the foreign key
fields from MasterFields when building master/detail relationship. DetailFields is a
string containing one or more field names in the detail table. Separate field names
with semicolons.
Use Field Link Designer to set the value in design time.

See Also

 MasterFields
 MasterSource

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components306

© 2013 Enter your company name

16.11.1.5.2.5 Disconnected Property

Used to keep dataset opened after connection is closed.

Class

TCustomDADataSet

Syntax

property Disconnected: boolean;

Remarks

Set the Disconnected property to True to keep dataset opened after connection is
closed.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.6 Encryption Property

Used to specify the options of the data encryption in a dataset.

Class

TCustomDADataSet

Syntax

property Encryption: TDAEncryptionOptions;

Remarks

Set the properties of Encryption to specify the options of the data encryption in a
dataset.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.7 FetchRows Property

Used to define the number of rows to be transferred across the network at the same
time.

Class

TCustomDADataSet

Syntax

property FetchRows: integer default 25;

Remarks

The number of rows that will be transferred across the network at the same time.
This property can have a great impact on performance. So it is preferable to choose
the optimal value of the FetchRows property for each SQL statement and software/
hardware configuration experimentally.
The default value is 25.

© 1997-2013 Devart. All Rights Reserved.

Reference 307

© 2013 Enter your company name

16.11.1.5.2.8 FilterSQL Property

Used to change the WHERE clause of SELECT statement and reopen a query.

Class

TCustomDADataSet

Syntax

property FilterSQL: string;

Remarks

The FilterSQL property is similar to the Filter property, but it changes the WHERE
clause of SELECT statement and reopens query. Syntax is the same to the WHERE
clause.

Example

Query1.FilterSQL := 'Dept >= 20 and DName LIKE ''M%''';

See Also


AddWhere

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.9 FinalSQL Property

Used to return SQL text with all changes performed by AddWhere, SetOrderBy, and
FilterSQL, and with expanded macros.

Class

TCustomDADataSet

Syntax

property FinalSQL: string;

Remarks

Use FinalSQL to return SQL text with all changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with expanded macros. This is the exact statement
that will be passed on to the database server.

See Also

 FinalSQL
 AddWhere
 SaveSQL
 SQLSaved
 RestoreSQL

Universal Data Access Components308

© 2013 Enter your company name

 BaseSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.10 IsQuery Property

Used to check whether SQL statement returns rows.

Class

TCustomDADataSet

Syntax

property IsQuery: boolean;

Remarks

After the TCustomDADataSet component is prepared, the IsQuery property returns
True if SQL statement is a SELECT query.
Use the IsQuery property to check whether the SQL statement returns rows or not.
IsQuery is a read-only property. Reading IsQuery on unprepared dataset raises an
exception.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.11 KeyFields Property

Used to build SQL statements for the SQLDelete, SQLInsert, and SQLUpdate
properties if they were empty before updating the database.

Class

TCustomDADataSet

Syntax

property KeyFields: string;

Remarks

TCustomDADataset uses the KeyFields property to build SQL statements for the
SQLDelete, SQLInsert, and SQLUpdate properties if they were empty before
updating the database. For this feature KeyFields may hold a list of semicolon-
delimited field names. If KeyFields is not defined before opening dataset,
TCustomDADataset .

See Also

 SQLDelete
 SQLInsert
 SQLRefresh
 SQLUpdate

© 1997-2013 Devart. All Rights Reserved.

Reference 309

© 2013 Enter your company name

16.11.1.5.2.12 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class

TCustomDADataSet

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the
Macros property.

See Also

 Macros

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.13 Macros Property

Makes it possible to change SQL queries easily.

Class

TCustomDADataSet

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or
runtime. Marcos extend abilities of parameters and allow to change conditions in a
WHERE clause or sort order in an ORDER BY clause. You just insert &MacroName in
the SQL query text and change value of macro in the Macro property editor at
design time or call the MacroByName function at run time. At the time of opening
the query macro is replaced by its value.

Example

UniQuery.SQL:= 'SELECT * FROM Dept ORDER BY &Order';
UniQuery.MacroByName('Order').Value:= 'DeptNo';
UniQuery.Open;

See Also


TMacro
 MacroByName

Universal Data Access Components310

© 2013 Enter your company name

 Params

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.14 MasterFields Property

Used to specify the names of one or more fields that are used as foreign keys for
dataset when establishing detail/master relationship between it and the dataset
specified in MasterSource.

Class

TCustomDADataSet

Syntax

property MasterFields: string;

Remarks

Use the MasterFields property after setting the MasterSource property to specify the
names of one or more fields that are used as foreign keys for this dataset when
establishing detail/master relationship between it and the dataset specified in
MasterSource.
MasterFields is a string containing one or more field names in the master table.
Separate field names with semicolons.
Each time the current record in the master table changes, the new values in these
fields are used to select corresponding records in this table for display.
Use Field Link Designer to set the values at design time after setting the
MasterSource property.

See Also

 DetailFields
 MasterSource
 Master/Detail Relationships

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.15 MasterSource Property

Used to specify the data source component which binds current dataset to the
master one.

Class

TCustomDADataSet

Syntax

property MasterSource: TDataSource;

Remarks

The MasterSource property specifies the data source component which binds current
dataset to the master one.
TCustomDADataset uses MasterSource to extract foreign key fields values from the

Reference 311

© 2013 Enter your company name

master dataset when building master/detail relationship between two datasets.
MasterSource must point to another dataset; it cannot point to this dataset
component.
When MasterSource is not nil dataset fills parameter values with corresponding field
values from the current record of the master dataset.
Note: Do not set the DataSource property when building master/detail
relationships. Although it points to the same object as the MasterSource property, it
may lead to undesirable results.

See Also

 MasterFields
 DetailFields
 Master/Detail Relationships

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.16 Options Property

Used to specify the behaviour of TCustomDADataSet object.

Class

TCustomDADataSet

Syntax

property Options: TDADataSetOptions;

Remarks

Set the properties of Options to specify the behaviour of a TCustomDADataSet
object.
Descriptions of all options are in the table below.

Option Name Description

AutoPrepare Used to execute automatic Prepare on
the query execution.

CacheCalcFields Used to enable caching of the TField.
Calculated and TField.Lookup fields.

CompressBlobMode Used to store values of the BLOB fields
in compressed form.

DefaultValues Used to request default values/
expressions from the server and assign
them to the DefaultExpression
property.

DetailDelay Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

Universal Data Access Components312

© 2013 Enter your company name

FieldsOrigin Used for TCustomDADataSet to fill the
Origin property of the TField objects by
appropriate value when opening a
dataset.

FlatBuffers Used to control how a dataset treats
data of the ftString and ftVarBytes
fields.

LocalMasterDetail Used for TCustomDADataSet to use
local filtering to establish master/detail
relationship for detail dataset and does
not refer to the server.

LongStrings Used to represent string fields with the
length that is greater than 255 as
TStringField.

NumberRange Used to set the MaxValue and MinValue
properties of TIntegerField and
TFloatField to appropriate values.

QueryRecCount Used for TCustomDADataSet to
perform additional query to get the
record count for this SELECT, so the
RecordCount property reflects the
actual number of records.

QuoteNames Used for TCustomDADataSet to quote
all database object names in
autogenerated SQL statements such as
update SQL.

RemoveOnRefresh Used for a dataset to locally remove a
record that can not be found on the
server.

RequiredFields Used for TCustomDADataSet to set the
Required property of the TField objects
for the NOT NULL fields.

ReturnParams Used to return the new value of fields
to dataset after insert or update.

SetFieldsReadOnly Used for a dataset to set the ReadOnly
property to True for all fields that do
not belong to UpdatingTable or can not
be updated.

StrictUpdate Used for TCustomDADataSet to raise
an exception when the number of
updated or deleted records is not equal
1.

TrimFixedChar Specifies whether to discard all trailing
spaces in the string fields of a dataset.

UpdateAllFields Used to include all dataset fields in the
generated UPDATE and INSERT
statements.

Reference 313

© 2013 Enter your company name

UpdateBatchSize Used to get or set a value that enables
or disables batch processing support,
and specifies the number of commands
that can be executed in a batch.

See Also


Master/Detail Relationships


TMemDataSet.CachedUpdates

©

 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.17 ParamCheck Property

Used to specify whether parameters for the Params property are generated
automatically after the SQL property was changed.

Class

TCustomDADataSet

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params
property are generated automatically after the SQL property was changed.
Set ParamCheck to True to let dataset automatically generate the Params property
for the dataset based on a SQL statement.
Setting ParamCheck to False can be used if the dataset component passes to a
server the DDL statements that contain, for example, declarations of stored
procedures which themselves will accept parameterized values. The default value is
True.

See Also

 Params

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.18 ParamCount Property

Used to indicate how many parameters are there in the Params property.

Class

Universal Data Access Components314

© 2013 Enter your company name

TCustomDADataSet

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the
Params property.

See Also

 Params

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.19 Params Property

Used to view and set parameter names, values, and data types dynamically.

Class

TCustomDADataSet

Syntax

property Params: TDAParams stored False;

Remarks

Contains the parameters for a query's SQL statement.
Access Params at runtime to view and set parameter names, values, and data types
dynamically (at design time use the Parameters editor to set the parameter
information). Params is a zero-based array of parameter records. Index specifies
the array element to access.
An easier way to set and retrieve parameter values when the name of each
parameter is known is to call ParamByName.

See Also

 ParamByName
 Macros

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.20 ReadOnly Property

Used to prevent users from updating, inserting, or deleting data in the dataset.

Class

TCustomDADataSet

Syntax

Reference 315

© 2013 Enter your company name

property ReadOnly: boolean default False;

Remarks

Use the ReadOnly property to prevent users from updating, inserting, or deleting
data in the dataset. By default, ReadOnly is False, meaning that users can
potentially alter data stored in the dataset.
To guarantee that users cannot modify or add data to a dataset, set ReadOnly to
True.
When ReadOnly is True, the dataset's CanModify property is False.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.21 RefreshOptions Property

Used to indicate when the editing record is refreshed.

Class

TCustomDADataSet

Syntax

property RefreshOptions: TRefreshOptions default [];

Remarks

Use the RefreshOptions property to determine when the editing record is refreshed.
Refresh is performed by the RefreshRecord method.
It queries the current record and replaces one in the dataset. Refresh record is
useful when the table has triggers or the table fields have default values. Use
roBeforeEdit to get actual data before editing.
The default value is [].

See Also

 RefreshRecord

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.22 RowsAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted
during the last query operation.

Class

TCustomDADataSet

Syntax

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or
deleted during the last query operation. If RowsAffected is -1, the query has not

Universal Data Access Components316

© 2013 Enter your company name

inserted, updated, or deleted any rows.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.23 SQL Property

Used to provide a SQL statement that a query component executes when its Open
method is called.

Class

TCustomDADataSet

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to provide a SQL statement that a query component executes
when its Open method is called. At the design time the SQL property can be edited
by invoking the String List editor in Object Inspector.
When SQL is changed, TCustomDADataSet calls Close and UnPrepare.

See Also

 SQLInsert
 SQLUpdate
 SQLDelete
 SQLRefresh

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.24 SQLDelete Property

Used to specify a SQL statement that will be used when applying a deletion to a
record.

Class

TCustomDADataSet

Syntax

property SQLDelete: _TStrings;

Remarks

Use the SQLDelete property to specify the SQL statement that will be used when
applying a deletion to a record. Statements can be parameterized queries.
To create a SQLDelete statement at design-time, use the query statements editor.

Example

DELETE FROM Orders
 WHERE

Reference 317

© 2013 Enter your company name

 OrderID = :Old_OrderID

See Also


SQL
 SQLInsert
 SQLUpdate
 SQLRefresh

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.25 SQLInsert Property

Used to specify the SQL statement that will be used when applying an insertion to a
dataset.

Class

TCustomDADataSet

Syntax

property SQLInsert: _TStrings;

Remarks

Use the SQLInsert property to specify the SQL statement that will be used when
applying an insertion to a dataset. Statements can be parameterized queries.
Names of the parameters should be the same as field names. Parameters prefixed
with OLD_ allow using current values of fields prior to the actual operation.
Use ReturnParam to return OUT parameters back to dataset.
To create a SQLInsert statement at design-time, use the query statements editor.

See Also

 SQL
 SQLUpdate
 SQLDelete
 SQLRefresh

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.26 SQLLock Property

Used to specify a SQL statement that will be used to perform a record lock.

Class

TCustomDADataSet

Syntax

property SQLLock: _TStrings;

Universal Data Access Components318

© 2013 Enter your company name

Remarks

Use the SQLLock property to specify a SQL statement that will be used to perform a
record lock. Statements can be parameterized queries. Names of the parameters
should be the same as field names. The parameters prefixed with OLD_ allow to use
current values of fields prior to the actual operation.
To create a SQLLock statement at design-time, the use query statement editor.

See Also

 SQL
 SQLInsert
 SQLUpdate
 SQLDelete
 SQLRefresh

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.27 SQLRefresh Property

Used to specify a SQL statement that will be used to refresh current record by
calling the RefreshRecord procedure.

Class

TCustomDADataSet

Syntax

property SQLRefresh: _TStrings;

Remarks

Use the SQLRefresh property to specify a SQL statement that will be used to refresh
current record by calling the RefreshRecord procedure.
Different behavior is observed when the SQLRefresh property is assigned with a
single WHERE clause that holds frequently altered search condition. In this case the
WHERE clause from SQLRefresh is combined with the same clause of the SELECT
statement in a SQL property and this final query is then sent to the database
server.
To create a SQLRefresh statement at design-time, use the query statements editor.

Example

SELECT Shipname FROM Orders
 WHERE
 OrderID = :OrderID

See Also


RefreshRecord

Reference 319

© 2013 Enter your company name

 SQL
 SQLInsert
 SQLUpdate
 SQLDelete

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.28 SQLUpdate Property

Used to specify a SQL statement that will be used when applying an update to a
dataset.

Class

TCustomDADataSet

Syntax

property SQLUpdate: _TStrings;

Remarks

Use the SQLUpdate property to specify a SQL statement that will be used when
applying an update to a dataset. Statements can be parameterized queries. Names
of the parameters should be the same as field names. The parameters prefixed with
OLD_ allow to use current values of fields prior to the actual operation.
Use ReturnParam to return OUT parameters back to the dataset.
To create a SQLUpdate statement at design-time, use the query statement editor.

Example

UPDATE Orders
 set
 ShipName = :ShipName
 WHERE
 OrderID = :Old_OrderID

See Also


SQL
 SQLInsert
 SQLDelete
 SQLRefresh

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.2.29 UniDirectional Property

Used if an application does not need bidirectional access to records in the result set.

Class

TCustomDADataSet

Universal Data Access Components320

© 2013 Enter your company name

Syntax

property UniDirectional: boolean default False;

Remarks

Traditionally SQL cursors are unidirectional. They can travel only forward through a
dataset. TCustomDADataset, however, permits bidirectional travelling by caching
records. If an application does not need bidirectional access to the records in the
result set, set UniDirectional to True. When UniDirectional is True, an application
requires less memory and performance is improved. However, UniDirectional
datasets cannot be modified.
In FetchAll=False mode data is fetched on demand. When UniDirectional is set to
True, data is fetched on demand as well, but obtained rows are not cached except
for the current row. So, FetchAll=False mode is a component of UniDirectional=True
mode, and setting UniDirectional to True requires FetchAll to be set to False. Pay
attention to the restrictions of TCustomUniDataSet.SpecificOptions = False mode.
The default value of UniDirectional is False, enabling forward and backward
navigation.

See Also

 TCustomUniDataSet.SpecificOptions

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3 Methods

Methods of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the
TCustomDADataSet Members topic.

Public

Name Description

AddWhere Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Reference 321

© 2013 Enter your company name

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Execute Executes a SQL statement
on the server.

Executing Indicates whether SQL
statement is still being
executed.

Fetched Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey Searches for a record which
contains specified field
values.

FindMacro Indicates whether a
specified macro exists in a
dataset.

FindNearest Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType Returns internal field types
defined in the MemData and
accompanying modules.

Universal Data Access Components322

© 2013 Enter your company name

GetFieldObject Returns a multireference
shared object from field.

GetFieldPrecision Retrieves the precision of a
number field.

GetFieldScale Retrieves the scale of a
number field.

GetOrderBy Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock Locks the current record.

MacroByName Finds a Macro with the name
passed in Name.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

ParamByName Sets or uses parameter
information for a specific
parameter based on its
name.

Prepare Allocates, opens, and parses
cursor for a query.

Reference 323

© 2013 Enter your company name

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RefreshRecord Actualizes field values for
the current record.

RestoreSQL Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveSQL Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy Builds an ORDER BY clause
of a SELECT statement.

SQLSaved Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Universal Data Access Components324

© 2013 Enter your company name

See Also
 TCustomDADataSet Class
 TCustomDADataSet Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.1 AddWhere Method

Adds condition to the WHERE clause of SELECT statement in the SQL property.

Class

TCustomDADataSet

Syntax

procedure AddWhere(Condition: string);
Parameters

Condition
Holds the condition that will be added to the WHERE clause.

Remarks

Call the AddWhere method to add a condition to the WHERE clause of SELECT
statement in the SQL property.
If SELECT has no WHERE clause, AddWhere creates it.
Note: The AddWhere method is implicitly called by RefreshRecord. The AddWhere
method works for the SELECT statements only.

See Also

 DeleteWhere

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.2 BreakExec Method

Breaks execution of the SQL statement on the server.

Class

TCustomDADataSet

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server.
It makes sense to call BreakExec only from another thread.

© 1997-2013 Devart. All Rights Reserved.

Reference 325

© 2013 Enter your company name

16.11.1.5.3.3 CreateBlobStream Method

Used to obtain a stream for reading data from or writing data to a BLOB field,
specified by the Field parameter.

Class

TCustomDADataSet

Syntax

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
TStream; override;
Parameters

Field
Holds the BLOB field for reading data from or writing data to from a stream.

Mode
Holds the stream mode, for which the stream will be used.

Return Value

The BLOB Stream.

Remarks

Call the CreateBlobStream method to obtain a stream for reading data from or
writing data to a BLOB field, specified by the Field parameter. It must be a
TBlobField component. You can specify whether the stream will be used for reading,
writing, or updating the contents of the field with the Mode parameter.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.4 DeleteWhere Method

Removes WHERE clause from the SQL property and assigns the BaseSQL property.

Class

TCustomDADataSet

Syntax

procedure DeleteWhere;

Remarks

Call the DeleteWhere method to remove WHERE clause from the the SQL property
and assign BaseSQL.

See Also

 AddWhere
 BaseSQL

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components326

© 2013 Enter your company name

16.11.1.5.3.5 Execute Method

Executes a SQL statement on the server.

Class

TCustomDADataSet

Syntax

procedure Execute; virtual;

Remarks

Call the Execute method to execute a SQL statement on the server. If SQL
statement is a query, Execute calls the Open method.
Execute implicitly prepares SQL statement by calling the Prepare method if the
Options option is set to True and the statement has not been prepared yet. To
speed up the performance in case of multiple Execute calls, an application should
call Prepare before calling the Execute method for the first time.

See Also

 AfterExecute
 Executing
 Prepare

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.6 Executing Method

Indicates whether SQL statement is still being executed.

Class

TCustomDADataSet

Syntax

function Executing: boolean;
Return Value

True, if SQL statement is still being executed.

Remarks

Check Executing to learn whether TCustomDADataSet is still executing SQL
statement. Use the Executing method if NonBlocking is True.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.7 Fetched Method

Used to learn whether TCustomDADataSet has already fetched all rows.

Class

TCustomDADataSet

Reference 327

© 2013 Enter your company name

Syntax

function Fetched: boolean; virtual;
Return Value

True, if all rows are fetched.

Remarks

Check Fetched to learn whether TCustomDADataSet has already fetched all rows.

See Also

 Fetching

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.8 Fetching Method

Used to learn whether TCustomDADataSet is still fetching rows.

Class

TCustomDADataSet

Syntax

function Fetching: boolean;
Return Value

True, if TCustomDADataSet is still fetching rows.

Remarks

Check Fetching to learn whether TCustomDADataSet is still fetching rows. Use the
Fetching method if NonBlocking is True.

See Also

 Executing

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.9 FetchingAll Method

Used to learn whether TCustomDADataSet is fetching all rows to the end.

Class

TCustomDADataSet

Syntax

function FetchingAll: boolean;
Return Value

Universal Data Access Components328

© 2013 Enter your company name

True, if TCustomDADataSet is fetching all rows to the end.

Remarks

Check FetchingAll to learn whether TCustomDADataSet is fetching all rows to the
end.

See Also

 Executing

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.10 FindKey Method

Searches for a record which contains specified field values.

Class

TCustomDADataSet

Syntax

function FindKey(const KeyValues: array of System.TVarRec):
Boolean;
Parameters

KeyValues
Holds a key.

Remarks

Call the FindKey method to search for a specific record in a dataset. KeyValues
holds a comma-delimited array of field values, that is called a key.
This function is provided for BDE compatibility only. It is recommended to use
functions TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.11 FindMacro Method

Indicates whether a specified macro exists in a dataset.

Class

TCustomDADataSet

Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the name of the macro to search for.

Return Value

Reference 329

© 2013 Enter your company name

a TMacro object, if a macro with matching name was found, otherwise returns nil.

Remarks

Call the FindMacro method to determine if a specified macro exists. If FindMacro
finds a macro with a matching name, it returns a TMacro object for the specified
Name. Otherwise it returns nil.

See Also

 TMacro
 Macros
 MacroByName

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.12 FindNearest Method

Moves the cursor to a specific record or to the first record in the dataset that
matches or is greater than the values specified in the KeyValues parameter.

Class

TCustomDADataSet

Syntax

procedure FindNearest(const KeyValues: array of System.TVarRec);
Parameters

KeyValues
Holds the values of the record key fields to which the cursor should be moved.

Remarks

Call the FindNearest method to move the cursor to a specific record or to the first
record in the dataset that matches or is greater than the values specified in the
KeyValues parameter. If there are no records that match or exceed the specified
criteria, the cursor will not move.
This function is provided for BDE compatibility only. It is recommended to use
functions TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.

See Also

 TMemDataSet.Locate
 TMemDataSet.LocateEx
 FindKey

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components330

© 2013 Enter your company name

16.11.1.5.3.13 FindParam Method

Determines if a parameter with the specified name exists in a dataset.

Class

TCustomDADataSet

Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the name of the param for which to search.

Return Value

the TDAParam object for the specified Name. Otherwise it returns nil.

Remarks

Call the FindParam method to determine if a specified param component exists in a
dataset. Name is the name of the param for which to search. If FindParam finds a
param with a matching name, it returns a TDAParam object for the specified Name.
Otherwise it returns nil.

See Also

 Params
 ParamByName

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.14 GetDataType Method

Returns internal field types defined in the MemData and accompanying modules.

Class

TCustomDADataSet

Syntax

function GetDataType(const FieldName: string): integer; virtual;
Parameters

FieldName
Holds the name of the field.

Return Value

internal field types defined in MemData and accompanying modules.

Remarks

Call the GetDataType method to return internal field types defined in the MemData
and accompanying modules. Internal field data types extend the TFieldType type of
VCL by specific database server data types. For example, ftString, ftFile, ftObject.

Reference 331

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.15 GetFieldObject Method

Returns a multireference shared object from field.

Class

TCustomDADataSet

Syntax

function GetFieldObject(Field: TField): TSharedObject; overload;
function GetFieldObject(FieldDesc: TFieldDesc): TSharedObject;
overload;function GetFieldObject(const FieldName: string):
TSharedObject; overload;
Parameters

FieldName
Holds the field name.

Return Value

multireference shared object.

Remarks

Call the GetFieldObject method to return a multireference shared object from field.
If field does not hold one of the TSharedObject descendants, GetFieldObject raises
an exception.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.16 GetFieldPrecision Method

Retrieves the precision of a number field.

Class

TCustomDADataSet

Syntax

function GetFieldPrecision(const FieldName: string): integer;
Parameters

FieldName
Holds the existing field name.

Return Value

precision of number field.

Remarks

Call the GetFieldPrecision method to retrieve the precision of a number field.
FieldName is the name of an existing field.

Universal Data Access Components332

© 2013 Enter your company name

See Also

 GetFieldScale

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.17 GetFieldScale Method

Retrieves the scale of a number field.

Class

TCustomDADataSet

Syntax

function GetFieldScale(const FieldName: string): integer;
Parameters

FieldName
Holds the existing field name.

Return Value

the scale of the number field.

Remarks

Call the GetFieldScale method to retrieve the scale of a number field. FieldName is
the name of an existing field.

See Also

 GetFieldPrecision

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.18 GetOrderBy Method

Retrieves an ORDER BY clause from a SQL statement.

Class

TCustomDADataSet

Syntax

function GetOrderBy: string;
Return Value

an ORDER BY clause from the SQL statement.

Remarks

Call the GetOrderBy method to retrieve an ORDER BY clause from a SQL statement.
Note: GetOrderBy and SetOrderBy methods serve to process only quite simple
queries and don't support, for example, subqueries.

Reference 333

© 2013 Enter your company name

See Also

 SetOrderBy

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.19 GotoCurrent Method

Sets the current record in this dataset similar to the current record in another
dataset.

Class

TCustomDADataSet

Syntax

procedure GotoCurrent(DataSet: TCustomDADataSet);
Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

Remarks

Call the GotoCurrent method to set the current record in this dataset similar to the
current record in another dataset. The key fields in both these DataSets must be
coincident.

See Also

 TMemDataSet.Locate
 TMemDataSet.LocateEx

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.20 Lock Method

Locks the current record.

Class

TCustomDADataSet

Syntax

procedure Lock; virtual;

Remarks

Call the Lock method to lock the current record by executing the statement that is
defined in the SQLLock property.
The Lock method sets the savepoint with the name LOCK_ + <component_name>.

Universal Data Access Components334

© 2013 Enter your company name

See Also

 UnLock

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.21 MacroByName Method

Finds a Macro with the name passed in Name.

Class

TCustomDADataSet

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds the name of the Macro to search for.

Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a
match was found, MacroByName returns the Macro. Otherwise, an exception is
raised. Use this method rather than a direct reference to the Items property to
avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not
found, use the FindMacro method.
To assign the value of macro use the TMacro.Value property.

Example

UniQuery.SQL:= 'SELECT * FROM Scott.Dept ORDER BY &Order';
UniQuery.MacroByName('Order').Value:= 'DeptNo';
UniQuery.Open;

See Also


TMacro
 Macros
 FindMacro

© 1997-2013 Devart. All Rights Reserved.

Reference 335

© 2013 Enter your company name

16.11.1.5.3.22 ParamByName Method

Sets or uses parameter information for a specific parameter based on its name.

Class

TCustomDADataSet

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the name of the parameter for which to retrieve information.

Return Value

a TDAParam object.

Remarks

Call the ParamByName method to set or use parameter information for a specific
parameter based on its name. Name is the name of the parameter for which to
retrieve information. ParamByName is used to set a parameter's value at runtime
and returns a TDAParam object.

Example

The following statement retrieves the current value of a parameter called "Contact"
into an edit box:
Edit1.Text := Query1.ParamsByName('Contact').AsString;

See Also


Params
 FindParam

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.23 Prepare Method

Allocates, opens, and parses cursor for a query.

Class

TCustomDADataSet

Syntax

procedure Prepare; override;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling
Prepare before executing a query improves application performance.

Universal Data Access Components336

© 2013 Enter your company name

The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically
closed and unprepared.

See Also

 TMemDataSet.Prepared
 TMemDataSet.UnPrepare
 Options

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.24 RefreshRecord Method

Actualizes field values for the current record.

Class

TCustomDADataSet

Syntax

procedure RefreshRecord;

Remarks

Call the RefreshRecord method to actualize field values for the current record.
RefreshRecord performs query to database and refetches new field values from the
returned cursor.

See Also

 RefreshOptions
 SQLRefresh

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.25 RestoreSQL Method

Restores the SQL property modified by AddWhere and SetOrderBy.

Class

TCustomDADataSet

Syntax

procedure RestoreSQL;

Remarks

Call the RestoreSQL method to restore the SQL property modified by AddWhere and
SetOrderBy.

Reference 337

© 2013 Enter your company name

See Also

 AddWhere
 SetOrderBy
 SaveSQL
 SQLSaved

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.26 Resync Method

Resynchronize the dataset with underlying physical data when making calls that
may change the internal cursor position.

Class

TCustomDADataSet

Syntax

procedure Resync(Mode: TResyncMode); override;
Parameters

Mode
Holds optional processing that Resync should handle.

Remarks

Resync is used to resynchronize the dataset with underlying physical data when
making calls that may change the internal cursor position.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.27 SaveSQL Method

Saves the SQL property value to BaseSQL.

Class

TCustomDADataSet

Syntax

procedure SaveSQL;

Remarks

Call the SaveSQL method to save the SQL property value to the BaseSQL property.

See Also

 SQLSaved
 RestoreSQL
 BaseSQL

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components338

© 2013 Enter your company name

16.11.1.5.3.28 SetOrderBy Method

Builds an ORDER BY clause of a SELECT statement.

Class

TCustomDADataSet

Syntax

procedure SetOrderBy(Fields: string);
Parameters

Fields
Holds the names of the fields which will be added to the ORDER BY clause.

Remarks

Call the SetOrderBy method to build an ORDER BY clause of a SELECT statement.
The fields are identified by the comma-delimited field names.
Note: The GetOrderBy and SetOrderBy methods serve to process only quite simple
queries and don't support, for example, subqueries.

Example

Query1.SetOrderBy('DeptNo;DName');

See Also


GetOrderBy

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.3.29 SQLSaved Method

Determines if the SQL property value was saved to the BaseSQL property.

Class

TCustomDADataSet

Syntax

function SQLSaved: boolean;
Return Value

True, if the SQL property value was saved to the BaseSQL property.

Remarks

Call the SQLSaved method to know whether the SQL property value was saved to
the BaseSQL property.

© 1997-2013 Devart. All Rights Reserved.

Reference 339

© 2013 Enter your company name

16.11.1.5.3.30 UnLock Method

Releases a record lock.

Class

TCustomDADataSet

Syntax

procedure UnLock;

Remarks

Call the Unlock method to release the record lock made by the Lock method before.
Unlock is performed by rolling back to the savepoint set by the Lock method.

See Also

 Lock

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.4 Events

Events of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the
TCustomDADataSet Members topic.

Public

Name Description

AfterExecute Occurs after a component
has executed a query to
database.

AfterFetch Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BeforeFetch Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute Occurs before executing
insert, delete, update, lock,
and refresh operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Universal Data Access Components340

© 2013 Enter your company name

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Reference 341

© 2013 Enter your company name

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TCustomDADataSet Class
 TCustomDADataSet Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.4.1 AfterExecute Event

Occurs after a component has executed a query to database.

Class

TCustomDADataSet

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a component has executed a query to database.

See Also

 Execute

Universal Data Access Components342

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.4.2 AfterFetch Event

Occurs after dataset finishes fetching data from server.

Class

TCustomDADataSet

Syntax

property AfterFetch: TAfterFetchEvent;

Remarks

The AfterFetch event occurs after dataset finishes fetching data from server.

See Also

 BeforeFetch

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.4.3 AfterUpdateExecute Event

Occurs after executing insert, delete, update, lock and refresh operations.

Class

TCustomDADataSet

Syntax

property AfterUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs after executing insert, delete, update, lock, and refresh operations. You can
use AfterUpdateExecute to set the parameters of corresponding statements.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.4.4 BeforeFetch Event

Occurs before dataset is going to fetch block of records from the server.

Class

TCustomDADataSet

Syntax

property BeforeFetch: TBeforeFetchEvent;

Remarks

The BeforeFetch event occurs every time before dataset is going to fetch a block of
records from the server. Set Cancel to True to abort current fetch operation.

Reference 343

© 2013 Enter your company name

See Also

 AfterFetch

© 1997-2013 Devart. All Rights Reserved.

16.11.1.5.4.5 BeforeUpdateExecute Event

Occurs before executing insert, delete, update, lock, and refresh operations.

Class

TCustomDADataSet

Syntax

property BeforeUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs before executing insert, delete, update, lock, and refresh operations. You
can use BeforeUpdateExecute to set the parameters of corresponding statements.

See Also

 AfterUpdateExecute

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6 TCustomDASQL Class

A base class for components executing SQL statements that do not return result
sets.
For a list of all members of this type, see TCustomDASQL members.

Unit

DBAccess

Syntax

TCustomDASQL = class(TComponent);

Remarks

TCustomDASQL is a base class that defines functionality for descendant classes
which access database using SQL statements. Applications never use
TCustomDASQL objects directly. Instead they use descendants of TCustomDASQL.
Use TCustomDASQL when client application must execute SQL statement or call
stored procedure on the database server. The SQL statement should not retrieve
rows from the database.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components344

© 2013 Enter your company name

16.11.1.6.1 Members

TCustomDASQL class overview.

Properties

Name Description

ChangeCursor Enables or disables changing
screen cursor when
executing commands in the
NonBlocking mode.

Connection Used to specify a connection
object to use to connect to a
data store.

Debug Used to display executing
statement, all its
parameters' values, and the
type of parameters.

FinalSQL Used to return a SQL
statement with expanded
macros.

MacroCount Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

ParamCheck Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount Indicates the number of
parameters in the Params
property.

Params Used to contain parameters
for a SQL statement.

ParamValues Used to get or set the values
of individual field
parameters that are
identified by name.

Prepared Used to indicate whether a
query is prepared for
execution.

RowsAffected Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

Reference 345

© 2013 Enter your company name

SQL Used to provide a SQL
statement that a
TCustomDASQL component
executes when the Execute
method is called.

Methods

Name Description

Execute Overloaded. Executes SQL
commands.

Executing Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro Searches for a macro with
the specified name.

FindParam Finds a parameter with the
specified name.

MacroByName Finds a Macro with the name
passed in Name.

ParamByName Finds a parameter with the
specified name.

Prepare Allocates, opens, and parses
cursor for a query.

UnPrepare Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

Events

Name Description

AfterExecute Occurs after a SQL
statement has been
executed.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2 Properties

Properties of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL
Members topic.

Public

Name Description

Universal Data Access Components346

© 2013 Enter your company name

ChangeCursor Enables or disables changing
screen cursor when
executing commands in the
NonBlocking mode.

Connection Used to specify a connection
object to use to connect to a
data store.

Debug Used to display executing
statement, all its
parameters' values, and the
type of parameters.

FinalSQL Used to return a SQL
statement with expanded
macros.

MacroCount Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

ParamCheck Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount Indicates the number of
parameters in the Params
property.

Params Used to contain parameters
for a SQL statement.

ParamValues Used to get or set the values
of individual field
parameters that are
identified by name.

Prepared Used to indicate whether a
query is prepared for
execution.

RowsAffected Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL Used to provide a SQL
statement that a
TCustomDASQL component
executes when the Execute
method is called.

See Also
 TCustomDASQL Class
 TCustomDASQL Class Members

Reference 347

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.1 ChangeCursor Property

Enables or disables changing screen cursor when executing commands in the
NonBlocking mode.

Class

TCustomDASQL

Syntax

property ChangeCursor: boolean;

Remarks

Set the ChangeCursor property to False to prevent the screen cursor from changing
to crSQLArrow when executing commands in the NonBlocking mode. The default
value is True.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.2 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TCustomDASQL

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to
connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or
its descendant class objects.
At runtime, link an instance of a TCustomDAConnection descendant to the
Connection property.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.3 Debug Property

Used to display executing statement, all its parameters' values, and the type of
parameters.

Class

TCustomDASQL

Syntax

property Debug: boolean default False;

Remarks

Universal Data Access Components348

© 2013 Enter your company name

Set the Debug property to True to display executing statement and all its
parameters' values. Also displays the type of parameters.
You should add the UniDACVcl unit to the uses clause of any unit in your project to
make the Debug property work.

See Also

 TCustomDADataSet.Debug

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.4 FinalSQL Property

Used to return a SQL statement with expanded macros.

Class

TCustomDASQL

Syntax

property FinalSQL: string;

Remarks

Read the FinalSQL property to return a SQL statement with expanded macros. This
is the exact statement that will be passed on to the database server.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.5 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class

TCustomDASQL

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the
Macros property.

See Also

 Macros

© 1997-2013 Devart. All Rights Reserved.

Reference 349

© 2013 Enter your company name

16.11.1.6.2.6 Macros Property

Makes it possible to change SQL queries easily.

Class

TCustomDASQL

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or
runtime. Marcos extend abilities of parameters and allow to change conditions in a
WHERE clause or sort order in an ORDER BY clause. You just insert &MacroName in
the SQL query text and change value of macro in the Macro property editor at
design time or call the MacroByName function at run time. At the time of opening
the query macro is replaced by its value.

See Also

 TMacro
 MacroByName
 Params

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.7 ParamCheck Property

Used to specify whether parameters for the Params property are implicitly
generated when the SQL property is being changed.

Class

TCustomDASQL

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params
property are implicitly generated when the SQL property is being changed.
Set ParamCheck to True to let TCustomDASQL generate the Params property for the
dataset based on a SQL statement automatically.
Setting ParamCheck to False can be used if the dataset component passes to a
server the DDL statements that contain, for example, declarations of the stored
procedures that will accept parameterized values themselves. The default value is
True.

See Also

Universal Data Access Components350

© 2013 Enter your company name

 Params

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.8 ParamCount Property

Indicates the number of parameters in the Params property.

Class

TCustomDASQL

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the
Params property.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.9 Params Property

Used to contain parameters for a SQL statement.

Class

TCustomDASQL

Syntax

property Params: TDAParams stored False;

Remarks

Access the Params property at runtime to view and set parameter names, values,
and data types dynamically (at design-time use the Parameters editor to set
parameter properties). Params is a zero-based array of parameter records. Index
specifies the array element to access. An easier way to set and retrieve parameter
values when the name of each parameter is known is to call ParamByName.

Example

Setting parameters at runtime:
procedure TForm1.Button1Click(Sender: TObject);
begin
with UniSQL do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Temp_Table(Id, Name)');
 SQL.Add('VALUES (:id, :Name)');
 ParamByName('Id').AsInteger := 55;
 Params[1].AsString := ' Green';
 Execute;
 end;
end;

Reference 351

© 2013 Enter your company name

See Also


TDAParam
 FindParam
 Macros

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.10 ParamValues Property(Indexer)

Used to get or set the values of individual field parameters that are identified by
name.

Class

TCustomDASQL

Syntax

property ParamValues[ParamName: string]: variant; default;
Parameters

ParamName
Holds parameter names separated by semicolon.

Remarks

Use the ParamValues property to get or set the values of individual field parameters
that are identified by name.
Setting ParamValues sets the Value property for each parameter listed in the
ParamName string. Specify the values as Variants.
Getting ParamValues retrieves an array of variants, each of which represents the
value of one of the named parameters.
Note: The Params array is generated implicitly if ParamCheck property is set to
True. If ParamName includes a name that does not match any of the parameters in
Items, an exception is raised.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.11 Prepared Property

Used to indicate whether a query is prepared for execution.

Class

TCustomDASQL

Syntax

property Prepared: boolean;

Remarks

Check the Prepared property to determine if a query is already prepared for
execution. True means that the query has already been prepared. As a rule

Universal Data Access Components352

© 2013 Enter your company name

prepared queries are executed faster, but the preparation itself also takes some
time. One of the proper cases for using preparation is parametrized queries that are
executed several times.

See Also

 Prepare

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.12 RowsAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted
during the last query operation.

Class

TCustomDASQL

Syntax

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or
deleted during the last query operation. If RowsAffected is -1, the query has not
inserted, updated, or deleted any rows.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.2.13 SQL Property

Used to provide a SQL statement that a TCustomDASQL component executes when
the Execute method is called.

Class

TCustomDASQL

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to provide a SQL statement that a TCustomDASQL component
executes when the Execute method is called. At design time the SQL property can
be edited by invoking the String List editor in Object Inspector.

See Also

 FinalSQL
 TCustomDASQL.Execute

Reference 353

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3 Methods

Methods of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL
Members topic.

Public

Name Description

Execute Overloaded. Executes SQL
commands.

Executing Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro Searches for a macro with
the specified name.

FindParam Finds a parameter with the
specified name.

MacroByName Finds a Macro with the name
passed in Name.

ParamByName Finds a parameter with the
specified name.

Prepare Allocates, opens, and parses
cursor for a query.

UnPrepare Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

See Also
 TCustomDASQL Class
 TCustomDASQL Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.1 Execute Method

Executes SQL commands.

Class

TCustomDASQL

Overload List

Name Description

Execute Executes SQL commands.

Execute(Iters: integer) Is not used in UniDAC.

Universal Data Access Components354

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

Executes SQL commands.

Class

TCustomDASQL

Syntax

procedure Execute; overload; virtual

Remarks

Call the Execute method to execute a SQL statement on the server. If the SQL
statement has OUT parameters, use the TCustomDASQL.ParamByName method or
the TCustomDASQL.Params property to get their values. Iters argument specifies
the number of times this statement is executed for the DML array operations.

© 1997-2013 Devart. All Rights Reserved.

Is not used in UniDAC.

Class

TCustomDASQL

Syntax

procedure Execute(Iters: integer); overload; virtual
Parameters

Iters
Is not used in UniDAC.

Remarks

Is not used in UniDAC.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.2 Executing Method

Checks whether TCustomDASQL still executes a SQL statement.

Class

TCustomDASQL

Syntax

function Executing: boolean;
Return Value

True, if a SQL statement is still being executed by TCustomDASQL.

Remarks

Check Executing to find out whether TCustomDASQL still executes a SQL statement.
Executing method is used for nonblocking execution.

Reference 355

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.3 FindMacro Method

Searches for a macro with the specified name.

Class

TCustomDASQL

Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the name of a macro to search for.

Return Value

the TMacro object, if a macro with the specified name has been found. If it has
not, returns nil.

Remarks

Call the FindMacro method to find a macro with the specified name in a dataset.

See Also

 TMacro
 Macros
 MacroByName

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.4 FindParam Method

Finds a parameter with the specified name.

Class

TCustomDASQL

Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name to search for.

Return Value

a TDAParm object, if a parameter with the specified name has been found. If it
has not, returns nil.

Remarks

Universal Data Access Components356

© 2013 Enter your company name

Call the FindParam method to find a parameter with the specified name in a
dataset.

See Also

 ParamByName

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.5 MacroByName Method

Finds a Macro with the name passed in Name.

Class

TCustomDASQL

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds the name of the Macro to search for.

Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a
match was found, MacroByName returns the Macro. Otherwise, an exception is
raised. Use this method rather than a direct reference to the Items property to
avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not
found, use the FindMacro method.
To assign the value of macro use the TMacro.Value property.

See Also

 TMacro
 Macros
 FindMacro

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.6 ParamByName Method

Finds a parameter with the specified name.

Class

TCustomDASQL

Reference 357

© 2013 Enter your company name

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the name of the parameter to search for.

Return Value

a TDAParam object, if a match was found. Otherwise, an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the specified name. If no
parameter with the specified name found, an exception is raised.

Example

UniSQL.Execute;
Edit1.Text := UniSQL.ParamsByName('Contact').AsString;

See Also


FindParam

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.7 Prepare Method

Allocates, opens, and parses cursor for a query.

Class

TCustomDASQL

Syntax

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling
Prepare before executing a query improves application performance.
The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically
closed and unprepared.

See Also

 Prepared
 UnPrepare

Universal Data Access Components358

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.8 UnPrepare Method

Frees the resources allocated for a previously prepared query on the server and
client sides.

Class

TCustomDASQL

Syntax

procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free resources allocated for a previously prepared
query on the server and client sides.

See Also

 Prepare

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.3.9 WaitExecuting Method

Waits until TCustomDASQL executes a SQL statement.

Class

TCustomDASQL

Syntax

function WaitExecuting(TimeOut: integer = 0): boolean;
Parameters

TimeOut
Holds the time in seconds to wait while TCustomDASQL executes the SQL
statement. Zero means infinite time.

Return Value

True, if the execution of a SQL statement was completed in the preset time.

Remarks

Call the WaitExecuting method to wait until TCustomDASQL executes a SQL
statement. Use the WaitExecuting method for nonblocking execution.

See Also

 Executing

Reference 359

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.4 Events

Events of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL
Members topic.

Public

Name Description

AfterExecute Occurs after a SQL
statement has been
executed.

See Also
 TCustomDASQL Class
 TCustomDASQL Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.6.4.1 AfterExecute Event

Occurs after a SQL statement has been executed.

Class

TCustomDASQL

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a SQL statement has been executed. This event may be used for
descendant components which use multithreaded environment.

See Also

 TCustomDASQL.Execute

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7 TCustomDAUpdateSQL Class

A base class for components that provide DML statements for more flexible control
over data modifications.
For a list of all members of this type, see TCustomDAUpdateSQL members.

Unit

DBAccess

Syntax

Universal Data Access Components360

© 2013 Enter your company name

TCustomDAUpdateSQL = class(TComponent);

Remarks

TCustomDAUpdateSQL is a base class for components that provide DML statements
for more flexible control over data modifications. Besides providing BDE
compatibility, this component allows to associate a separate component for each
update command.

See Also

 TCustomUniDataSet.UpdateObject

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.1 Members

TCustomDAUpdateSQL class overview.

Properties

Name Description

DataSet Used to hold a reference to
the TCustomDADataSet
object that is being updated.

DeleteObject Provides ability to perform
advanced adjustment of the
delete operations.

DeleteSQL Used when deleting a
record.

InsertObject Provides ability to perform
advanced adjustment of
insert operations.

InsertSQL Used when inserting a
record.

LockObject Provides ability to perform
advanced adjustment of lock
operations.

LockSQL Used to lock the current
record.

ModifyObject Provides ability to perform
advanced adjustment of
modify operations.

ModifySQL Used when updating a
record.

RefreshObject Provides ability to perform
advanced adjustment of
refresh operations.

Reference 361

© 2013 Enter your company name

RefreshSQL Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.
RefreshRecord procedure.

SQL Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Methods

Name Description

Apply Sets parameters for a SQL
statement and executes it to
update a record.

ExecSQL Executes a SQL statement.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2 Properties

Properties of the TCustomDAUpdateSQL class.
For a complete list of the TCustomDAUpdateSQL class members, see the
TCustomDAUpdateSQL Members topic.

Public

Name Description

DataSet Used to hold a reference to
the TCustomDADataSet
object that is being updated.

SQL Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Published

Name Description

DeleteObject Provides ability to perform
advanced adjustment of the
delete operations.

DeleteSQL Used when deleting a
record.

InsertObject Provides ability to perform
advanced adjustment of
insert operations.

InsertSQL Used when inserting a
record.

Universal Data Access Components362

© 2013 Enter your company name

LockObject Provides ability to perform
advanced adjustment of lock
operations.

LockSQL Used to lock the current
record.

ModifyObject Provides ability to perform
advanced adjustment of
modify operations.

ModifySQL Used when updating a
record.

RefreshObject Provides ability to perform
advanced adjustment of
refresh operations.

RefreshSQL Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.
RefreshRecord procedure.

See Also
 TCustomDAUpdateSQL Class
 TCustomDAUpdateSQL Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.1 DataSet Property

Used to hold a reference to the TCustomDADataSet object that is being updated.

Class

TCustomDAUpdateSQL

Syntax

property DataSet: TCustomDADataSet;

Remarks

The DataSet property holds a reference to the TCustomDADataSet object that is
being updated. Generally it is not used directly.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.2 DeleteObject Property

Provides ability to perform advanced adjustment of the delete operations.

Class

TCustomDAUpdateSQL

Syntax

property DeleteObject: TComponent;

Reference 363

© 2013 Enter your company name

Remarks

Assign SQL component or a TCustomUniDataSet descendant to this property to
perform advanced adjustment of the delete operations. In some cases this can give
some additional performance. Use the same principle to set the SQL property of an
object as for setting the DeleteSQL property.

See Also

 DeleteSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.3 DeleteSQL Property

Used when deleting a record.

Class

TCustomDAUpdateSQL

Syntax

property DeleteSQL: _TStrings;

Remarks

Set the DeleteSQL property to a DELETE statement to use when deleting a record.
Statements can be parameterized queries with parameter names corresponding to
the dataset field names.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.4 InsertObject Property

Provides ability to perform advanced adjustment of insert operations.

Class

TCustomDAUpdateSQL

Syntax

property InsertObject: TComponent;

Remarks

Assign SQL component or TCustomUniDataSet descendant to this property to
perform advanced adjustment of insert operations. In some cases this can give
some additional performance. Set the SQL property of the object in the same way
as used for the InsertSQL property.

See Also

 InsertSQL

Universal Data Access Components364

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.5 InsertSQL Property

Used when inserting a record.

Class

TCustomDAUpdateSQL

Syntax

property InsertSQL: _TStrings;

Remarks

Set the InsertSQL property to an INSERT INTO statement to use when inserting a
record. Statements can be parameterized queries with parameter names
corresponding to the dataset field names.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.6 LockObject Property

Provides ability to perform advanced adjustment of lock operations.

Class

TCustomDAUpdateSQL

Syntax

property LockObject: TComponent;

Remarks

Assign a SQL component or TCustomUniDataSet descendant to this property to
perform advanced adjustment of lock operations. In some cases that can give some
additional performance. Set the SQL property of an object in the same way as used
for the LockSQL property.

See Also

 LockSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.7 LockSQL Property

Used to lock the current record.

Class

TCustomDAUpdateSQL

Syntax

property LockSQL: _TStrings;

Reference 365

© 2013 Enter your company name

Remarks

Use the LockSQL property to lock the current record. Statements can be
parameterized queries with parameter names corresponding to the dataset field
names.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.8 ModifyObject Property

Provides ability to perform advanced adjustment of modify operations.

Class

TCustomDAUpdateSQL

Syntax

property ModifyObject: TComponent;

Remarks

Assign a SQL component or TCustomUniDataSet descendant to this property to
perform advanced adjustment of modify operations. In some cases this can give
some additional performance. Set the SQL property of the object in the same way
as used for the ModifySQL property.

See Also

 ModifySQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.9 ModifySQL Property

Used when updating a record.

Class

TCustomDAUpdateSQL

Syntax

property ModifySQL: _TStrings;

Remarks

Set ModifySQL to an UPDATE statement to use when updating a record. Statements
can be parameterized queries with parameter names corresponding to the dataset
field names.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components366

© 2013 Enter your company name

16.11.1.7.2.10 RefreshObject Property

Provides ability to perform advanced adjustment of refresh operations.

Class

TCustomDAUpdateSQL

Syntax

property RefreshObject: TComponent;

Remarks

Assign a SQL component or TCustomUniDataSet descendant to this property to
perform advanced adjustment of refresh operations. In some cases that can give
some additional performance. Set the SQL property of the object in the same way
as used for the RefreshSQL property.

See Also

 RefreshSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.11 RefreshSQL Property

Used to specify an SQL statement that will be used for refreshing the current record
by TCustomDADataSet.RefreshRecord procedure.

Class

TCustomDAUpdateSQL

Syntax

property RefreshSQL: _TStrings;

Remarks

Use the RefreshSQL property to specify a SQL statement that will be used for
refreshing the current record by the TCustomDADataSet.RefreshRecord procedure.
You can assign to SQLRefresh a WHERE clause only. In such a case it is added to
SELECT defined by the SQL property by TCustomDADataSet.AddWhere.
To create a RefreshSQL statement at design time, use the query statements editor.

See Also

 TCustomDADataSet.RefreshRecord

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.2.12 SQL Property(Indexer)

Used to return a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL
properties.

Reference 367

© 2013 Enter your company name

Class

TCustomDAUpdateSQL

Syntax

property SQL[UpdateKind: TUpdateKind]: _TStrings;
Parameters

UpdateKind
Specifies which of update SQL statements to return.

Remarks

Returns a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL
properties, depending on the value of the UpdateKind index.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.3 Methods

Methods of the TCustomDAUpdateSQL class.
For a complete list of the TCustomDAUpdateSQL class members, see the
TCustomDAUpdateSQL Members topic.

Public

Name Description

Apply Sets parameters for a SQL
statement and executes it to
update a record.

ExecSQL Executes a SQL statement.

See Also
 TCustomDAUpdateSQL Class
 TCustomDAUpdateSQL Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.3.1 Apply Method

Sets parameters for a SQL statement and executes it to update a record.

Class

TCustomDAUpdateSQL

Syntax

procedure Apply(UpdateKind: TUpdateKind); virtual;
Parameters

UpdateKind
Specifies which of update SQL statements to execute.

Remarks

Call the Apply method to set parameters for a SQL statement and execute it to

Universal Data Access Components368

© 2013 Enter your company name

update a record. UpdateKind indicates which SQL statement to bind and execute.
Apply is primarily intended for manually executing update statements from an
OnUpdateRecord event handler.
Note: If a SQL statement does not contain parameters, it is more efficient to call
ExecSQL instead of Apply.

See Also

 ExecSQL

© 1997-2013 Devart. All Rights Reserved.

16.11.1.7.3.2 ExecSQL Method

Executes a SQL statement.

Class

TCustomDAUpdateSQL

Syntax

procedure ExecSQL(UpdateKind: TUpdateKind);
Parameters

UpdateKind
Specifies the kind of update statement to be executed.

Remarks

Call the ExecSQL method to execute a SQL statement, necessary for updating the
records belonging to a read-only result set when cached updates is enabled.
UpdateKind specifies the statement to execute.
ExecSQL is primarily intended for manually executing update statements from the
OnUpdateRecord event handler.
Note: To both bind parameters and execute a statement, call Apply.

See Also

 Apply

© 1997-2013 Devart. All Rights Reserved.

16.11.1.8 TDAConnectionOptions Class

This class allows setting up the behaviour of the TDAConnection class.
For a list of all members of this type, see TDAConnectionOptions members.

Unit

DBAccess

Syntax

TDAConnectionOptions = class(TPersistent);

Reference 369

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.8.1 Members

TDAConnectionOptions class overview.

Properties

Name Description

DefaultSortType Used to determine the
default type of local sorting
for string fields. It is used
when a sort type is not
specified explicitly after the
field name in the
TMemDataSet.
IndexFieldNames property of
a dataset.

DisconnectedMode Used to open a connection
only when needed for
performing a server call and
closes after performing the
operation.

KeepDesignConnected Used to prevent an
application from establishing
a connection at the time of
startup.

LocalFailover If True, the
TCustomDAConnection.
OnConnectionLost event
occurs and a failover
operation can be performed
after connection breaks.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.8.2 Properties

Properties of the TDAConnectionOptions class.
For a complete list of the TDAConnectionOptions class members, see the
TDAConnectionOptions Members topic.

Public

Name Description

Universal Data Access Components370

© 2013 Enter your company name

DefaultSortType Used to determine the
default type of local sorting
for string fields. It is used
when a sort type is not
specified explicitly after the
field name in the
TMemDataSet.
IndexFieldNames property of
a dataset.

DisconnectedMode Used to open a connection
only when needed for
performing a server call and
closes after performing the
operation.

KeepDesignConnected Used to prevent an
application from establishing
a connection at the time of
startup.

LocalFailover If True, the
TCustomDAConnection.
OnConnectionLost event
occurs and a failover
operation can be performed
after connection breaks.

See Also
 TDAConnectionOptions Class
 TDAConnectionOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.8.2.1 DefaultSortType Property

Used to determine the default type of local sorting for string fields. It is used when
a sort type is not specified explicitly after the field name in the TMemDataSet.
IndexFieldNames property of a dataset.

Class

TDAConnectionOptions

Syntax

property DefaultSortType: TSortType default stCaseSensitive;

Remarks

Use the DefaultSortType property to determine the default type of local sorting for
string fields. It is used when a sort type is not specified explicitly after the field
name in the TMemDataSet.IndexFieldNames property of a dataset.

© 1997-2013 Devart. All Rights Reserved.

Reference 371

© 2013 Enter your company name

16.11.1.8.2.2 DisconnectedMode Property

Used to open a connection only when needed for performing a server call and closes
after performing the operation.

Class

TDAConnectionOptions

Syntax

property DisconnectedMode: boolean default False;

Remarks

If True, connection opens only when needed for performing a server call and closes
after performing the operation. Datasets remain opened when connection closes.
May be useful to save server resources and operate in unstable or expensive
network. Drawback of using disconnect mode is that each connection establishing
requires some time for authorization. If connection is often closed and opened it can
slow down the application work. See the Disconnected Mode topic for more
information.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.8.2.3 KeepDesignConnected Property

Used to prevent an application from establishing a connection at the time of
startup.

Class

TDAConnectionOptions

Syntax

property KeepDesignConnected: boolean default True;

Remarks

At the time of startup prevents application from establishing a connection even if
the Connected property was set to True at design-time. Set KeepDesignConnected
to False to initialize the connected property to False, even if it was True at design-
time.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.8.2.4 LocalFailover Property

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover
operation can be performed after connection breaks.

Class

TDAConnectionOptions

Syntax

property LocalFailover: boolean default False;

Universal Data Access Components372

© 2013 Enter your company name

Remarks

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover
operation can be performed after connection breaks. Read the Working in an
Unstable Network topic for more information about using failover.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9 TDADataSetOptions Class

This class allows setting up the behaviour of the TDADataSet class.
For a list of all members of this type, see TDADataSetOptions members.

Unit

DBAccess

Syntax

TDADataSetOptions = class(TPersistent);

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.1 Members

TDADataSetOptions class overview.

Properties

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepare
on the query execution.

CacheCalcFields Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode Used to store values of the
BLOB fields in compressed
form.

DefaultValues Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

FieldsOrigin Used for TCustomDADataSet
to fill the Origin property of
the TField objects by
appropriate value when
opening a dataset.

Reference 373

© 2013 Enter your company name

FlatBuffers Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

LocalMasterDetail Used for TCustomDADataSet
to use local filtering to
establish master/detail
relationship for detail
dataset and does not refer
to the server.

LongStrings Used to represent string
fields with the length that is
greater than 255 as
TStringField.

NumberRange Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount Used for TCustomDADataSet
to perform additional query
to get the record count for
this SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames Used for TCustomDADataSet
to quote all database object
names in autogenerated SQL
statements such as update
SQL.

RemoveOnRefresh Used for a dataset to locally
remove a record that can
not be found on the server.

RequiredFields Used for TCustomDADataSet
to set the Required property
of the TField objects for the
NOT NULL fields.

ReturnParams Used to return the new
value of fields to dataset
after insert or update.

SetFieldsReadOnly Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

Universal Data Access Components374

© 2013 Enter your company name

StrictUpdate Used for TCustomDADataSet
to raise an exception when
the number of updated or
deleted records is not equal
1.

TrimFixedChar Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

UpdateAllFields Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2 Properties

Properties of the TDADataSetOptions class.
For a complete list of the TDADataSetOptions class members, see the
TDADataSetOptions Members topic.

Public

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepare
on the query execution.

CacheCalcFields Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode Used to store values of the
BLOB fields in compressed
form.

DefaultValues Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

Reference 375

© 2013 Enter your company name

FieldsOrigin Used for TCustomDADataSet
to fill the Origin property of
the TField objects by
appropriate value when
opening a dataset.

FlatBuffers Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

LocalMasterDetail Used for TCustomDADataSet
to use local filtering to
establish master/detail
relationship for detail
dataset and does not refer
to the server.

LongStrings Used to represent string
fields with the length that is
greater than 255 as
TStringField.

NumberRange Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount Used for TCustomDADataSet
to perform additional query
to get the record count for
this SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames Used for TCustomDADataSet
to quote all database object
names in autogenerated SQL
statements such as update
SQL.

RemoveOnRefresh Used for a dataset to locally
remove a record that can
not be found on the server.

RequiredFields Used for TCustomDADataSet
to set the Required property
of the TField objects for the
NOT NULL fields.

ReturnParams Used to return the new
value of fields to dataset
after insert or update.

Universal Data Access Components376

© 2013 Enter your company name

SetFieldsReadOnly Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

StrictUpdate Used for TCustomDADataSet
to raise an exception when
the number of updated or
deleted records is not equal
1.

TrimFixedChar Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

UpdateAllFields Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

See Also
 TDADataSetOptions Class
 TDADataSetOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.1 AutoPrepare Property

Used to execute automatic TCustomDADataSet.Prepare on the query execution.

Class

TDADataSetOptions

Syntax

property AutoPrepare: boolean default False;

Remarks

Use the AutoPrepare property to execute automatic TCustomDADataSet.Prepare on
the query execution. Makes sense for cases when a query will be executed several
times, for example, in Master/Detail relationships.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.2 CacheCalcFields Property

Used to enable caching of the TField.Calculated and TField.Lookup fields.

Class

Reference 377

© 2013 Enter your company name

TDADataSetOptions

Syntax

property CacheCalcFields: boolean default False;

Remarks

Use the CacheCalcFields property to enable caching of the TField.Calculated and
TField.Lookup fields. It can be useful for reducing CPU usage for calculated fields.
Using caching of calculated and lookup fields increases memory usage on the client
side.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.3 CompressBlobMode Property

Used to store values of the BLOB fields in compressed form.

Class

TDADataSetOptions

Syntax

property CompressBlobMode: TCompressBlobMode default cbNone;

Remarks

Use the CompressBlobMode property to store values of the BLOB fields in
compressed form. Add the MemData unit to uses list to use this option.
Compression rate greatly depends on stored data, for example, usually graphic data
compresses badly unlike text.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.4 DefaultValues Property

Used to request default values/expressions from the server and assign them to the
DefaultExpression property.

Class

TDADataSetOptions

Syntax

property DefaultValues: boolean default False;

Remarks

If True, the default values/expressions are requested from the server and assigned
to the DefaultExpression property of TField objects replacing already existent
values.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components378

© 2013 Enter your company name

16.11.1.9.2.5 DetailDelay Property

Used to get or set a delay in milliseconds before refreshing detail dataset while
navigating master dataset.

Class

TDADataSetOptions

Syntax

property DetailDelay: integer default 0;

Remarks

Use the DetailDelay property to get or set a delay in milliseconds before refreshing
detail dataset while navigating master dataset. If DetailDelay is 0 (the default
value) then refreshing of detail dataset occurs immediately. The DetailDelay option
should be used for detail dataset.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.6 FieldsOrigin Property

Used for TCustomDADataSet to fill the Origin property of the TField objects by
appropriate value when opening a dataset.

Class

TDADataSetOptions

Syntax

property FieldsOrigin: boolean default False;

Remarks

If True, TCustomDADataSet fills the Origin property of the TField objects by
appropriate value when opening a dataset.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.7 FlatBuffers Property

Used to control how a dataset treats data of the ftString and ftVarBytes fields.

Class

TDADataSetOptions

Syntax

property FlatBuffers: boolean default False;

Remarks

Use the FlatBuffers property to control how a dataset treats data of the ftString and
ftVarBytes fields. When set to True, all data fetched from the server is stored in
record pdata without unused tails.

Reference 379

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.8 LocalMasterDetail Property

Used for TCustomDADataSet to use local filtering to establish master/detail
relationship for detail dataset and does not refer to the server.

Class

TDADataSetOptions

Syntax

property LocalMasterDetail: boolean default False;

Remarks

If True, for detail dataset in master-detail relationship TCustomDADataSet uses
local filtering for establishing master/detail relationship and does not refer to the
server. Otherwise detail dataset performs query each time a record is selected in
master dataset. This option is useful for reducing server calls number, server
resources economy. It can be useful for slow connection. The TMemDataSet.
CachedUpdates mode can be used for detail dataset only when this option is set to
true. Setting the LocalMasterDetail option to True is not recommended when detail
table contains too many rows, because when it is set to False, only records that
correspond to the current record in master dataset are fetched.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.9 LongStrings Property

Used to represent string fields with the length that is greater than 255 as
TStringField.

Class

TDADataSetOptions

Syntax

property LongStrings: boolean default True;

Remarks

Use the LongStrings property to represent string fields with the length that is
greater than 255 as TStringField, not as TMemoField.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.10 NumberRange Property

Used to set the MaxValue and MinValue properties of TIntegerField and TFloatField
to appropriate values.

Class

TDADataSetOptions

Syntax

Universal Data Access Components380

© 2013 Enter your company name

property NumberRange: boolean default False;

Remarks

Use the NumberRange property to set the MaxValue and MinValue properties of
TIntegerField and TFloatField to appropriate values.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.11 QueryRecCount Property

Used for TCustomDADataSet to perform additional query to get the record count for
this SELECT, so the RecordCount property reflects the actual number of records.

Class

TDADataSetOptions

Syntax

property QueryRecCount: boolean default False;

Remarks

If True, and the TCustomUniDataSet.SpecificOptions property is False,
TCustomDADataSet performs additional query to get the record count for this
SELECT, so the RecordCount property reflects the actual number of records. Does
not have any effect if the FetchAll property is True.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.12 QuoteNames Property

Used for TCustomDADataSet to quote all database object names in autogenerated
SQL statements such as update SQL.

Class

TDADataSetOptions

Syntax

property QuoteNames: boolean default False;

Remarks

If True, TCustomDADataSet quotes all database object names in autogenerated SQL
statements such as update SQL.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.13 RemoveOnRefresh Property

Used for a dataset to locally remove a record that can not be found on the server.

Class

TDADataSetOptions

Syntax

Reference 381

© 2013 Enter your company name

property RemoveOnRefresh: boolean default True;

Remarks

When the RefreshRecord procedure can't find necessary record on the server and
RemoveOnRefresh is set to True, dataset removes the record locally. Usually
RefreshRecord can't find necessary record when someone else dropped the record or
changed the key value of it.
This option makes sense only if the StrictUpdate option is set to False. If the
StrictUpdate option is True, error will be generated regardless of the
RemoveOnRefresh option value.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.14 RequiredFields Property

Used for TCustomDADataSet to set the Required property of the TField objects for
the NOT NULL fields.

Class

TDADataSetOptions

Syntax

property RequiredFields: boolean default True;

Remarks

If True, TCustomDADataSet sets the Required property of the TField objects for the
NOT NULL fields. It is useful when table has a trigger which updates the NOT NULL
fields.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.15 ReturnParams Property

Used to return the new value of fields to dataset after insert or update.

Class

TDADataSetOptions

Syntax

property ReturnParams: boolean default False;

Remarks

Use the ReturnParams property to return the new value of fields to dataset after
insert or update. The actual value of field after insert or update may be different
from the value stored in the local memory if the table has a trigger. When
ReturnParams is True, OUT parameters of the SQLInsert and SQLUpdate statements
is assigned to the corresponding fields.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components382

© 2013 Enter your company name

16.11.1.9.2.16 SetFieldsReadOnly Property

Used for a dataset to set the ReadOnly property to True for all fields that do not
belong to UpdatingTable or can not be updated.

Class

TDADataSetOptions

Syntax

property SetFieldsReadOnly: boolean default True;

Remarks

If True, dataset sets the ReadOnly property to True for all fields that do not belong
to UpdatingTable or can not be updated. Set this option for datasets that use
automatic generation of the update SQL statements only.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.17 StrictUpdate Property

Used for TCustomDADataSet to raise an exception when the number of updated or
deleted records is not equal 1.

Class

TDADataSetOptions

Syntax

property StrictUpdate: boolean default True;

Remarks

If True, TCustomDADataSet raises an exception when the number of updated or
deleted records is not equal 1. Setting this option also causes the exception if the
RefreshRecord procedure returns more than one record. The exception does not
occur when you execute SQL query, that doesn't return resultset.
Note: There can be problems if this option is set to True and triggers for UPDATE,
DELETE, REFRESH commands that are defined for the table. So it is recommended
to disable (set to False) this option with triggers.
TrimFixedChar specifies whether to discard all trailing spaces in the string fields of a
dataset.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.18 TrimFixedChar Property

Specifies whether to discard all trailing spaces in the string fields of a dataset.

Class

TDADataSetOptions

Syntax

property TrimFixedChar: boolean default True;

Reference 383

© 2013 Enter your company name

Remarks

Specifies whether to discard all trailing spaces in the string fields of a dataset.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.19 UpdateAllFields Property

Used to include all dataset fields in the generated UPDATE and INSERT statements.

Class

TDADataSetOptions

Syntax

property UpdateAllFields: boolean default False;

Remarks

If True, all dataset fields will be included in the generated UPDATE and INSERT
statements. Unspecified fields will have NULL value in the INSERT statements.
Otherwise, only updated fields will be included to the generated update statements.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.9.2.20 UpdateBatchSize Property

Used to get or set a value that enables or disables batch processing support, and
specifies the number of commands that can be executed in a batch.

Class

TDADataSetOptions

Syntax

property UpdateBatchSize: Integer default 1;

Remarks

Use the UpdateBatchSize property to get or set a value that enables or disables
batch processing support, and specifies the number of commands that can be
executed in a batch. Takes effect only when updating dataset in the TMemDataSet.
CachedUpdates mode. The default value is 1.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.10TDAEncryptionOptions Class

Used to specify the options of the data encryption in a dataset.
For a list of all members of this type, see TDAEncryptionOptions members.

Unit

DBAccess

Syntax

TDAEncryptionOptions = class(TPersistent);

Universal Data Access Components384

© 2013 Enter your company name

Remarks

Set the properties of Encryption to specify the options of the data encryption in a
dataset. Descriptions of all options are in the table below.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.10.1 Members

TDAEncryptionOptions class overview.

Properties

Name Description

Encryptor Used to specify the
encryptor class that will
perform the data encryption.

Fields Used to set field names for
which encryption will be
performed.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.10.2 Properties

Properties of the TDAEncryptionOptions class.
For a complete list of the TDAEncryptionOptions class members, see the
TDAEncryptionOptions Members topic.

Public

Name Description

Encryptor Used to specify the
encryptor class that will
perform the data encryption.

Published

Name Description

Fields Used to set field names for
which encryption will be
performed.

See Also
 TDAEncryptionOptions Class
 TDAEncryptionOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.10.2.1 Encryptor Property

Used to specify the encryptor class that will perform the data encryption.

Class

Reference 385

© 2013 Enter your company name

TDAEncryptionOptions

Syntax

property Encryptor: TCREncryptor;

Remarks

Use the Encryptor property to specify the encryptor class that will perform the data
encryption.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.10.2.2 Fields Property

Used to set field names for which encryption will be performed.

Class

TDAEncryptionOptions

Syntax

property Fields: string;

Remarks

Used to set field names for which encryption will be performed.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11TDAMapRule Class

Class that formes rules for Data Type Mapping.
For a list of all members of this type, see TDAMapRule members.

Unit

DBAccess

Syntax

TDAMapRule = class(TMapRule);

Remarks

Using properties of this class, it is possible to change parameter values of the
specified rules from the TDAMapRules set.

Inheritance Hierarchy

TMapRule
 TDAMapRule

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.1 Members

TDAMapRule class overview.

Properties

Universal Data Access Components386

© 2013 Enter your company name

Name Description

DBLengthMax Maximum DB field length,
until which the rule is
applied.

DBLengthMin Minimum DB field length,
starting from which the rule
is applied.

DBScaleMax Maximum DB field scale,
until which the rule is
applied to the specified DB
field.

DBScaleMin Minimum DB field Scale,
starting from which the rule
is applied to the specified
DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in
Delphi.

FieldName DataSet field name, for
which the rule is applied.

FieldScale The resultant field Scale in
Delphi.

FieldType Delphi field type, that the
specified DB type or DataSet
field will be mapped to.

IgnoreErrors Ignoring errors when
converting data from DB to
Delphi type.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2 Properties

Properties of the TDAMapRule class.
For a complete list of the TDAMapRule class members, see the TDAMapRule
Members topic.

Published

Name Description

DBLengthMax Maximum DB field length,
until which the rule is
applied.

DBLengthMin Minimum DB field length,
starting from which the rule
is applied.

DBScaleMax Maximum DB field scale,
until which the rule is
applied to the specified DB
field.

Reference 387

© 2013 Enter your company name

DBScaleMin Minimum DB field Scale,
starting from which the rule
is applied to the specified
DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in
Delphi.

FieldName DataSet field name, for
which the rule is applied.

FieldScale The resultant field Scale in
Delphi.

FieldType Delphi field type, that the
specified DB type or DataSet
field will be mapped to.

IgnoreErrors Ignoring errors when
converting data from DB to
Delphi type.

See Also
 TDAMapRule Class
 TDAMapRule Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.1 DBLengthMax Property

Maximum DB field length, until which the rule is applied.

Class

TDAMapRule

Syntax

property DBLengthMax: Integer default rlAny;

Remarks

Setting maximum DB field length, until which the rule is applied to the specified DB
field.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.2 DBLengthMin Property

Minimum DB field length, starting from which the rule is applied.

Class

TDAMapRule

Syntax

property DBLengthMin: Integer default rlAny;

Universal Data Access Components388

© 2013 Enter your company name

Remarks

Setting minimum DB field length, starting from which the rule is applied to the
specified DB field.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.3 DBScaleMax Property

Maximum DB field scale, until which the rule is applied to the specified DB field.

Class

TDAMapRule

Syntax

property DBScaleMax: Integer default rlAny;

Remarks

Setting maximum DB field scale, until which the rule is applied to the specified DB
field.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.4 DBScaleMin Property

Minimum DB field Scale, starting from which the rule is applied to the specified DB
field.

Class

TDAMapRule

Syntax

property DBScaleMin: Integer default rlAny;

Remarks

Setting minimum DB field Scale, starting from which the rule is applied to the
specified DB field.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.5 DBType Property

DB field type, that the rule is applied to.

Class

TDAMapRule

Syntax

property DBType: Word default dtUnknown;

Remarks

Reference 389

© 2013 Enter your company name

Setting DB field type, that the rule is applied to. If the current rule is set for
Connection, the rule will be applied to all fields of the specified type in all DataSets
related to this Connection.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.6 FieldLength Property

The resultant field length in Delphi.

Class

TDAMapRule

Syntax

property FieldLength: Integer default rlAny;

Remarks

Setting the Delphi field length after conversion.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.7 FieldName Property

DataSet field name, for which the rule is applied.

Class

TDAMapRule

Syntax

property FieldName: string;

Remarks

Specifies the DataSet field name, that the rule is applied to. If the current rule is set
for Connection, the rule will be applied to all fields with such name in DataSets
related to this Connection.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.8 FieldScale Property

The resultant field Scale in Delphi.

Class

TDAMapRule

Syntax

property FieldScale: Integer default rlAny;

Remarks

Setting the Delphi field Scale after conversion.

Universal Data Access Components390

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.9 FieldType Property

Delphi field type, that the specified DB type or DataSet field will be mapped to.

Class

TDAMapRule

Syntax

property FieldType: TFieldType default ftUnknown;

Remarks

Setting Delphi field type, that the specified DB type or DataSet field will be mapped
to.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.11.2.10 IgnoreErrors Property

Ignoring errors when converting data from DB to Delphi type.

Class

TDAMapRule

Syntax

property IgnoreErrors: Boolean default False;

Remarks

Allows to ignore errors while data conversion in case if data or DB data format
cannot be recorded to the specified Delphi field type. The default value is false.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.12TDAMapRules Class

Used for adding rules for DataSet fields mapping with both identifying by field name
and by field type and Delphi field types.
For a list of all members of this type, see TDAMapRules members.

Unit

DBAccess

Syntax

TDAMapRules = class(TMapRules);

Inheritance Hierarchy

TMapRules
 TDAMapRules

© 1997-2013 Devart. All Rights Reserved.

Reference 391

© 2013 Enter your company name

16.11.1.12.1 Members

TDAMapRules class overview.

Methods

Name Description

AddDBTypeRule Overloaded. Adding rules for
mapping Database field
types to Delphi field types.

AddFieldNameRule Overloaded. Adding rules for
mapping named fields to
Delphi field types and
setting resultant length and
scale for Delphi fields

AddRule A unified method of adding
rules for mapping a DataSet
named field or DB field type
with the specified length and
scale to a field type with the
specified length and scale in
Delphi.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.12.2 Methods

Methods of the TDAMapRules class.
For a complete list of the TDAMapRules class members, see the TDAMapRules
Members topic.

Public

Name Description

AddDBTypeRule Overloaded. Adding rules for
mapping Database field
types to Delphi field types.

AddFieldNameRule Overloaded. Adding rules for
mapping named fields to
Delphi field types and
setting resultant length and
scale for Delphi fields

AddRule A unified method of adding
rules for mapping a DataSet
named field or DB field type
with the specified length and
scale to a field type with the
specified length and scale in
Delphi.

See Also
 TDAMapRules Class
 TDAMapRules Class Members

Universal Data Access Components392

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.12.2.1 AddDBTypeRule Method

Adding rules for mapping Database field types to Delphi field types.

Class

TDAMapRules

Overload List

Name Description

AddDBTypeRule(DBType: Word;
FieldType: TFieldType; IgnoreErrors:
boolean)

Adding rules for mapping Database
field types to Delphi field types.

AddDBTypeRule(DBType: Word;
FieldType: TFieldType; FieldLength:
Integer; IgnoreErrors: boolean)

Adding rules for mapping Database
field types to Delphi field types with
the specified Delphi field length.

AddDBTypeRule(DBType: Word;
FieldType: TFieldType; FieldLength:
Integer; FieldScale: Integer;
IgnoreErrors: boolean)

Adding rules for mapping Database
field types to Delphi field types with
the specified resultant length and scale
of Delphi field.

AddDBTypeRule(DBType: Word;
DBLengthMin: Integer; DBLengthMax:
Integer; FieldType: TFieldType;
IgnoreErrors: boolean)

Adding rules for mapping Database
field types to Delphi field types with
the specified minimum and maximum
length of DB fields, for which the
specified conversion will be applied.

AddDBTypeRule(DBType: Word;
DBLengthMin: Integer; DBLengthMax:
Integer; FieldType: TFieldType;
FieldLength: Integer; IgnoreErrors:
boolean)

Adding rules for mapping Database
field types to Delphi field types with
the specified minimum and maximum
length of DB fields, for which the
specified conversion will be applied.

AddDBTypeRule(DBType: Word;
DBLengthMin: Integer; DBLengthMax:
Integer; DBScaleMin: Integer;
DBScaleMax: Integer; FieldType:
TFieldType; IgnoreErrors: boolean)

Adding rules for mapping Database
field types to Delphi field types with
the specified minimum and maximum
length and scale of DB fields, for which
the specified conversion will be applied,
and with setting the resultant Delphi
field length.

AddDBTypeRule(DBType: Word;
DBLengthMin: Integer; DBLengthMax:
Integer; DBScaleMin: Integer;
DBScaleMax: Integer; FieldType:
TFieldType; FieldLength: Integer;
FieldScale: Integer; IgnoreErrors:
boolean)

Adding rules for mapping Database
field types to Delphi field types with
the specified minimum and maximum
length and scale of DB fields, for which
the specified conversion will be applied,
and with setting the resultant Delphi
field length and scale.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types.

Class

Reference 393

© 2013 Enter your company name

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to all DB fields and Delphi fields, that support
conversion between each other.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the
specified Delphi field length.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
FieldLength: Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftString, ftWideString, ftBytes,
ftVarBytes.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the
specified resultant length and scale of Delphi field.

Class

Universal Data Access Components394

© 2013 Enter your company name

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
FieldLength: Integer; FieldScale: Integer; IgnoreErrors: boolean
= False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftBCD and ftFMTBCD.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the
specified minimum and maximum length of DB fields, for which the specified
conversion will be applied.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; FieldType: TFieldType; IgnoreErrors:
boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

Reference 395

© 2013 Enter your company name

This method can be applied for all DB text fields.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the
specified minimum and maximum length of DB fields, for which the specified
conversion will be applied.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; FieldType: TFieldType; FieldLength:
Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to DB text fields for retrieving Delphi fields ftString,
ftWideString, ftBytes, ftVarBytes.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the
specified minimum and maximum length and scale of DB fields, for which the
specified conversion will be applied, and with setting the resultant Delphi field
length.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax: Integer;
FieldType: TFieldType; IgnoreErrors: boolean = False); overload
Parameters

Universal Data Access Components396

© 2013 Enter your company name

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to those DB fields, for which it is possible to set Scale
and Length.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the
specified minimum and maximum length and scale of DB fields, for which the
specified conversion will be applied, and with setting the resultant Delphi field
length and scale.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax: Integer;
FieldType: TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType

Reference 397

© 2013 Enter your company name

Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to those DB fields, for which it is possible to set Scale
and Length for retrieving Delphi fields ftBCD, ftFMTBCD.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.12.2.2 AddFieldNameRule Method

Adding rules for mapping named fields to Delphi field types and setting resultant
length and scale for Delphi fields

Class

TDAMapRules

Overload List

Name Description

AddFieldNameRule(FieldName: string;
FieldType: TFieldType; IgnoreErrors:
Boolean)

Adding rules for mapping named fields
to Delphi field types.

AddFieldNameRule(FieldName: string;
FieldType: TFieldType; FieldLength:
Integer; IgnoreErrors: Boolean)

Adding rules for mapping named fields
to Delphi field types and setting the
length for Delphi fields.

AddFieldNameRule(FieldName: string;
FieldType: TFieldType; FieldLength:
Integer; FieldScale: Integer;
IgnoreErrors: Boolean)

Adding rules for mapping named fields
to Delphi field types and setting the
resultant length and scale for Delphi
fields

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types.

Class

TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; IgnoreErrors: Boolean = False); overload
Parameters

FieldName
Field name in DataSet

FieldType

Universal Data Access Components398

© 2013 Enter your company name

Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to all DataSet field names and Delphi fields. If the DB
field type, whose name is specified in the rule, doesn't support conversion to the
specified Delphi type, the Unsupported Data Type Mapping error will occur when
opening DataSet.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting the length
for Delphi fields.

Class

TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; IgnoreErrors: Boolean =
False); overload
Parameters

FieldName
Field name in DataSet

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftString, ftWideString, ftBytes,
ftVarBytes.

© 1997-2013 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting the
resultant length and scale for Delphi fields

Class

TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; FieldScale: Integer;
IgnoreErrors: Boolean = False); overload
Parameters

Reference 399

© 2013 Enter your company name

FieldName
Field name in DataSet

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftBCD and ftFMTBCD.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.12.2.3 AddRule Method

A unified method of adding rules for mapping a DataSet named field or DB field
type with the specified length and scale to a field type with the specified length and
scale in Delphi.

Class

TDAMapRules

Syntax

procedure AddRule(FieldName: string; DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax:
Integer; FieldType: TFieldType; FieldLength: Integer;
FieldScale: Integer; IgnoreErrors: boolean = False); overload;
procedure AddRule(Rule: string); overload;
Parameters

FieldName
Field name in DataSet

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

FieldLength

Universal Data Access Components400

© 2013 Enter your company name

Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

One of two parameters requires to be specified: FieldName or DBType. Also, it is
required to specify the FieldType parameter. The other parameters are not required,
therefore it is allowed to set the rlAny constant for them instead of a specific value.
If the rlAny constant is set, then the given rule will be applied for all fields
independently on their length and scale.
For example, if it is necessary to set the field length in a database to 20 or more,
then DBLengthMin should be set to 20, and DBLengthMax - to rlAny.
If it is necessary to set scale to 5 or less, then DBScaleMin should be set to rlAny,
and DBScaleMax - to 5.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13TDAMetaData Class

A class for retrieving metainformation of the specified database objects in the form
of dataset.
For a list of all members of this type, see TDAMetaData members.

Unit

DBAccess

Syntax

TDAMetaData = class(TMemDataSet);

Remarks

TDAMetaData is a TDataSet descendant standing for retrieving metainformation of
the specified database objects in the form of dataset. First of all you need to specify
which kind of metainformation you want to see. For this you need to assign the
TDAMetaData.MetaDataKind property. Provide one or more conditions in the
TDAMetaData.Restrictions property to diminish the size of the resultset and get only
information you are interested in.
Use the TDAMetaData.GetMetaDataKinds method to get the full list of supported
kinds of meta data. With the TDAMetaData.GetRestrictions method you can find out
what restrictions are applicable to the specified MetaDataKind.

Example

The code below demonstrates how to get information about columns of the 'emp'
table:
MetaData.Connection := Connection;
MetaData.MetaDataKind := 'Columns';
MetaData.Restrictions.Values['TABLE_NAME'] := 'Emp';
MetaData.Open;

Reference 401

© 2013 Enter your company name

Inheritance Hierarchy

TMemDataSet
 TDAMetaData

See Also


TDAMetaData.MetaDataKind
 TDAMetaData.Restrictions
 TDAMetaData.GetMetaDataKinds
 TDAMetaData.GetRestrictions

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.1 Members

TDAMetaData class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Connection Used to specify a connection
object to use to connect to a
data store.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

MetaDataKind Used to specify which kind
of metainformation to show.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

Restrictions Used to provide one or more
conditions restricting the list
of objects to be described.

Universal Data Access Components402

© 2013 Enter your company name

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetMetaDataKinds Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions Used to find out which
restrictions are applicable to
a certain MetaDataKind.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

Reference 403

© 2013 Enter your company name

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.2 Properties

Properties of the TDAMetaData class.
For a complete list of the TDAMetaData class members, see the TDAMetaData
Members topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Universal Data Access Components404

© 2013 Enter your company name

Connection Used to specify a connection
object to use to connect to a
data store.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

MetaDataKind Used to specify which kind
of metainformation to show.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Restrictions Used to provide one or more
conditions restricting the list
of objects to be described.

Reference 405

© 2013 Enter your company name

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TDAMetaData Class
 TDAMetaData Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.2.1 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TDAMetaData

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object to use to connect to a
data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or
its descendant class objects.
At runtime, set the Connection property to reference an instanciated
TCustomDAConnection object.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components406

© 2013 Enter your company name

16.11.1.13.2.2 MetaDataKind Property

Used to specify which kind of metainformation to show.

Class

TDAMetaData

Syntax

property MetaDataKind: string;

Remarks

This string property specifies which kind of metainformation to show. The value of
this property should be assigned before activating the component. If MetaDataKind
equals to an empty string (the default value), the full value list that this property
accepts will be shown.
They are described in the table below:

MetaDataKin
d

Description

Columns show metainformation about columns of existing tables

Constraints
show metainformation about the constraints defined in the
database

IndexColumns show metainformation about indexed columns

Indexes show metainformation about indexes in a database

MetaDataKinds
show the acceptable values of this property. You will get the
same result if the MetadataKind property is an empty string

ProcedurePara
meters

show metainformation about parameters of existing
procedures

Procedures show metainformation about existing procedures

Restrictions
generates a dataset that describes which restrictions are
applicable to each MetaDataKind

Tables show metainformation about existing tables

Databases show metainformation about existing databases

If you provide a value that equals neither of the values described in the table, an
error will be raised.

See Also

 Restrictions

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.2.3 Restrictions Property

Used to provide one or more conditions restricting the list of objects to be
described.

Class

TDAMetaData

Reference 407

© 2013 Enter your company name

Syntax

property Restrictions: _TStrings;

Remarks

Use the Restriction list to provide one or more conditions restricting the list of
objects to be described. To see the full list of restrictions and to which metadata
kinds they are applicable, you should assign the Restrictions value to the
MetaDataKind property and view the result.

See Also

 MetaDataKind

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.3 Methods

Methods of the TDAMetaData class.
For a complete list of the TDAMetaData class members, see the TDAMetaData
Members topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetMetaDataKinds Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions Used to find out which
restrictions are applicable to
a certain MetaDataKind.

Universal Data Access Components408

© 2013 Enter your company name

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

Reference 409

© 2013 Enter your company name

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TDAMetaData Class
 TDAMetaData Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.3.1 GetMetaDataKinds Method

Used to get values acceptable in the MetaDataKind property.

Class

TDAMetaData

Syntax

procedure GetMetaDataKinds(List: _TStrings);
Parameters

List
Holds the object that will be filled with metadata kinds (restrictions).

Remarks

Call the GetMetaDataKinds method to get values acceptable in the MetaDataKind
property. The List parameter will be cleared and then filled with values.

See Also

 MetaDataKind

© 1997-2013 Devart. All Rights Reserved.

16.11.1.13.3.2 GetRestrictions Method

Used to find out which restrictions are applicable to a certain MetaDataKind.

Class

TDAMetaData

Universal Data Access Components410

© 2013 Enter your company name

Syntax

procedure GetRestrictions(List: _TStrings; const MetaDataKind:
string);
Parameters

List
Holds the object that will be filled with metadata kinds (restrictions).

MetaDataKind
Holds the metadata kind for which restrictions are returned.

Remarks

Call the GetRestrictions method to find out which restrictions are applicable to a
certain MetaDataKind. The List parameter will be cleared and then filled with values.

See Also

 Restrictions
 GetMetaDataKinds

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14TDAParam Class

A class that forms objects to represent the values of the parameters set.
For a list of all members of this type, see TDAParam members.

Unit

DBAccess

Syntax

TDAParam = class(TParam);

Remarks

Use the properties of TDAParam to set the value of a parameter. Objects that use
parameters create TDAParam objects to represent these parameters. For example,
TDAParam objects are used by TCustomDASQL, TCustomDADataSet.
TDAParam shares many properties with TField, as both describe the value of a field
in a dataset. However, a TField object has several properties to describe the field
binding and the way the field is displayed, edited, or calculated, that are not needed
in a TDAParam object. Conversely, TDAParam includes properties that indicate how
the field value is passed as a parameter.

See Also

 TCustomDADataSet
 TCustomDASQL
 TDAParams

Reference 411

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.1 Members

TDAParam class overview.

Properties

Name Description

AsBlob Used to set and read the
value of the BLOB parameter
as string.

AsBlobRef Used to set and read the
value of the BLOB parameter
as a TBlob object.

AsFloat Used to assign the value for
a float field to a parameter.

AsInteger Used to assign the value for
an integer field to the
parameter.

AsLargeInt Used to assign the value for
a LargeInteger field to the
parameter.

AsMemo Used to assign the value for
a memo field to the
parameter.

AsMemoRef Used to set and read the
value of the memo
parameter as a TBlob object.

AsSQLTimeStamp Used to specify the value of
the parameter when it
represents a SQL timestamp
field.

AsString Used to assign the string
value to the parameter.

AsWideString Used to assign the Unicode
string value to the
parameter.

DataType Indicates the data type of
the parameter.

IsNull Used to indicate whether the
value assigned to a
parameter is NULL.

ParamType Used to indicate the type of
use for a parameter.

Size Specifies the size of a string
type parameter.

Value Used to represent the value
of the parameter as Variant.

Methods

Universal Data Access Components412

© 2013 Enter your company name

Name Description

AssignField Assigns field name and field
value to a param.

AssignFieldValue Assigns the specified field
properties and value to a
parameter.

LoadFromFile Places the content of a
specified file into a
TDAParam object.

LoadFromStream Places the content from a
stream into a TDAParam
object.

SetBlobData Overloaded. Writes the data
from a specified buffer to
BLOB.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2 Properties

Properties of the TDAParam class.
For a complete list of the TDAParam class members, see the TDAParam Members
topic.

Public

Name Description

AsBlob Used to set and read the
value of the BLOB parameter
as string.

AsBlobRef Used to set and read the
value of the BLOB parameter
as a TBlob object.

AsFloat Used to assign the value for
a float field to a parameter.

AsInteger Used to assign the value for
an integer field to the
parameter.

AsLargeInt Used to assign the value for
a LargeInteger field to the
parameter.

AsMemo Used to assign the value for
a memo field to the
parameter.

AsMemoRef Used to set and read the
value of the memo
parameter as a TBlob object.

AsSQLTimeStamp Used to specify the value of
the parameter when it
represents a SQL timestamp
field.

Reference 413

© 2013 Enter your company name

AsString Used to assign the string
value to the parameter.

AsWideString Used to assign the Unicode
string value to the
parameter.

IsNull Used to indicate whether the
value assigned to a
parameter is NULL.

Published

Name Description

DataType Indicates the data type of
the parameter.

ParamType Used to indicate the type of
use for a parameter.

Size Specifies the size of a string
type parameter.

Value Used to represent the value
of the parameter as Variant.

See Also
 TDAParam Class
 TDAParam Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.1 AsBlob Property

Used to set and read the value of the BLOB parameter as string.

Class

TDAParam

Syntax

property AsBlob: TBlobData;

Remarks

Use the AsBlob property to set and read the value of the BLOB parameter as string.
Setting AsBlob will set the DataType property to ftBlob.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.2 AsBlobRef Property

Used to set and read the value of the BLOB parameter as a TBlob object.

Class

TDAParam

Syntax

Universal Data Access Components414

© 2013 Enter your company name

property AsBlobRef: TBlob;

Remarks

Use the AsBlobRef property to set and read the value of the BLOB parameter as a
TBlob object. Setting AsBlobRef will set the DataType property to ftBlob.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.3 AsFloat Property

Used to assign the value for a float field to a parameter.

Class

TDAParam

Syntax

property AsFloat: double;

Remarks

Use the AsFloat property to assign the value for a float field to the parameter.
Setting AsFloat will set the DataType property to dtFloat.
Read the AsFloat property to determine the value that was assigned to an output
parameter, represented as Double. The value of the parameter will be converted to
the Double value if possible.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.4 AsInteger Property

Used to assign the value for an integer field to the parameter.

Class

TDAParam

Syntax

property AsInteger: integer;

Remarks

Use the AsInteger property to assign the value for an integer field to the parameter.
Setting AsInteger will set the DataType property to dtInteger.
Read the AsInteger property to determine the value that was assigned to an output
parameter, represented as a 32-bit integer. The value of the parameter will be
converted to the Integer value if possible.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.5 AsLargeInt Property

Used to assign the value for a LargeInteger field to the parameter.

Class

TDAParam

Reference 415

© 2013 Enter your company name

Syntax

property AsLargeInt: Int64;

Remarks

Set the AsLargeInt property to assign the value for an Int64 field to the parameter.
Setting AsLargeInt will set the DataType property to dtLargeint.
Read the AsLargeInt property to determine the value that was assigned to an
output parameter, represented as a 64-bit integer. The value of the parameter will
be converted to the Int64 value if possible.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.6 AsMemo Property

Used to assign the value for a memo field to the parameter.

Class

TDAParam

Syntax

property AsMemo: string;

Remarks

Use the AsMemo property to assign the value for a memo field to the parameter.
Setting AsMemo will set the DataType property to ftMemo.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.7 AsMemoRef Property

Used to set and read the value of the memo parameter as a TBlob object.

Class

TDAParam

Syntax

property AsMemoRef: TBlob;

Remarks

Use the AsMemoRef property to set and read the value of the memo parameter as a
TBlob object. Setting AsMemoRef will set the DataType property to ftMemo.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.8 AsSQLTimeStamp Property

Used to specify the value of the parameter when it represents a SQL timestamp
field.

Class

TDAParam

Universal Data Access Components416

© 2013 Enter your company name

Syntax

property AsSQLTimeStamp: TSQLTimeStamp;

Remarks

Set the AsSQLTimeStamp property to assign the value for a SQL timestamp field to
the parameter. Setting AsSQLTimeStamp sets the DataType property to
ftTimeStamp.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.9 AsString Property

Used to assign the string value to the parameter.

Class

TDAParam

Syntax

property AsString: string;

Remarks

Use the AsString property to assign the string value to the parameter. Setting
AsString will set the DataType property to ftString.
Read the AsString property to determine the value that was assigned to an output
parameter represented as a string. The value of the parameter will be converted to
a string.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.10 AsWideString Property

Used to assign the Unicode string value to the parameter.

Class

TDAParam

Syntax

property AsWideString: string;

Remarks

Set AsWideString to assign the Unicode string value to the parameter. Setting
AsWideString will set the DataType property to ftWideString.
Read the AsWideString property to determine the value that was assigned to an
output parameter, represented as a Unicode string. The value of the parameter will
be converted to a Unicode string.

© 1997-2013 Devart. All Rights Reserved.

Reference 417

© 2013 Enter your company name

16.11.1.14.2.11 DataType Property

Indicates the data type of the parameter.

Class

TDAParam

Syntax

property DataType: TFieldType stored IsDataTypeStored;

Remarks

DataType is set automatically when a value is assigned to a parameter. Do not set
DataType for bound fields, as this may cause the assigned value to be
misinterpreted.
Read DataType to learn the type of data that was assigned to the parameter. Every
possible value of DataType corresponds to the type of a database field.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.12 IsNull Property

Used to indicate whether the value assigned to a parameter is NULL.

Class

TDAParam

Syntax

property IsNull: boolean;

Remarks

Use the IsNull property to indicate whether the value assigned to a parameter is
NULL.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.13 ParamType Property

Used to indicate the type of use for a parameter.

Class

TDAParam

Syntax

property ParamType default DB . ptUnknown;

Remarks

Objects that use TDAParam objects to represent field parameters set ParamType to
indicate the type of use for a parameter.
To learn the description of TParamType refer to Delphi Help.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components418

© 2013 Enter your company name

16.11.1.14.2.14 Size Property

Specifies the size of a string type parameter.

Class

TDAParam

Syntax

property Size: integer default 0;

Remarks

Use the Size property to indicate the maximum number of characters the parameter
may contain. Use the Size property only for Output parameters of the ftString,
ftFixedChar, ftBytes, ftVarBytes, or ftWideString type.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.2.15 Value Property

Used to represent the value of the parameter as Variant.

Class

TDAParam

Syntax

property Value: variant stored IsValueStored;

Remarks

The Value property represents the value of the parameter as Variant.
Use Value in generic code that manipulates the values of parameters without the
need to know the field type the parameter represent.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.3 Methods

Methods of the TDAParam class.
For a complete list of the TDAParam class members, see the TDAParam Members
topic.

Public

Name Description

AssignField Assigns field name and field
value to a param.

AssignFieldValue Assigns the specified field
properties and value to a
parameter.

LoadFromFile Places the content of a
specified file into a
TDAParam object.

Reference 419

© 2013 Enter your company name

LoadFromStream Places the content from a
stream into a TDAParam
object.

SetBlobData Overloaded. Writes the data
from a specified buffer to
BLOB.

See Also
 TDAParam Class
 TDAParam Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.3.1 AssignField Method

Assigns field name and field value to a param.

Class

TDAParam

Syntax

procedure AssignField(Field: TField);
Parameters

Field
Holds the field which name and value should be assigned to the param.

Remarks

Call the AssignField method to assign field name and field value to a param.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.3.2 AssignFieldValue Method

Assigns the specified field properties and value to a parameter.

Class

TDAParam

Syntax

procedure AssignFieldValue(Field: TField; const Value: Variant);
virtual;
Parameters

Field
Holds the field the properties of which will be assigned to the parameter.

Value
Holds the value for the parameter.

Remarks

Call the AssignFieldValue method to assign the specified field properties and value

Universal Data Access Components420

© 2013 Enter your company name

to a parameter.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.3.3 LoadFromFile Method

Places the content of a specified file into a TDAParam object.

Class

TDAParam

Syntax

procedure LoadFromFile(const FileName: string; BlobType:
TBlobType);
Parameters

FileName
Holds the name of the file.

BlobType
Holds a value that modifies the DataType property so that this TDAParam object
now holds the BLOB value.

Remarks

Use the LoadFromFile method to place the content of a file specified by FileName
into a TDAParam object. The BlobType value modifies the DataType property so that
this TDAParam object now holds the BLOB value.

See Also

 LoadFromStream

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.3.4 LoadFromStream Method

Places the content from a stream into a TDAParam object.

Class

TDAParam

Syntax

procedure LoadFromStream(Stream: TStream; BlobType: TBlobType);
virtual;
Parameters

Stream
Holds the stream to copy content from.

BlobType
Holds a value that modifies the DataType property so that this TDAParam object
now holds the BLOB value.

Reference 421

© 2013 Enter your company name

Remarks

Call the LoadFromStream method to place the content from a stream into a
TDAParam object. The BlobType value modifies the DataType property so that this
TDAParam object now holds the BLOB value.

See Also

 LoadFromFile

© 1997-2013 Devart. All Rights Reserved.

16.11.1.14.3.5 SetBlobData Method

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Overload List

Name Description

SetBlobData(Buffer: TValueBuffer) Writes the data from a specified buffer
to BLOB.

SetBlobData(Buffer: Pointer; Size:
Integer)

Writes the data from a specified buffer
to BLOB.

© 1997-2013 Devart. All Rights Reserved.

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Syntax

procedure SetBlobData(Buffer: TValueBuffer); overload
Parameters

Buffer
Holds the pointer to the data.

© 1997-2013 Devart. All Rights Reserved.

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Syntax

procedure SetBlobData(Buffer: Pointer; Size: Integer); overload
Parameters

Universal Data Access Components422

© 2013 Enter your company name

Buffer
Holds the pointer to data.

Size
Holds the number of bytes to read from the buffer.

Remarks

Call the SetBlobData method to write data from a specified buffer to BLOB.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15TDAParams Class

This class is used to manage a list of TDAParam objects for an object that uses field
parameters.
For a list of all members of this type, see TDAParams members.

Unit

DBAccess

Syntax

TDAParams = class(TParams);

Remarks

Use TDAParams to manage a list of TDAParam objects for an object that uses field
parameters. For example, TCustomDADataSet objects and TCustomDASQL objects
use TDAParams objects to create and access their parameters.

See Also

 TCustomDADataSet.Params
 TCustomDASQL.Params
 TDAParam

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15.1 Members

TDAParams class overview.

Properties

Name Description

Items Used to interate through all
parameters.

Methods

Name Description

FindParam Searches for a parameter
with the specified name.

Reference 423

© 2013 Enter your company name

ParamByName Searches for a parameter
with the specified name.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15.2 Properties

Properties of the TDAParams class.
For a complete list of the TDAParams class members, see the TDAParams Members
topic.

Public

Name Description

Items Used to interate through all
parameters.

See Also
 TDAParams Class
 TDAParams Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15.2.1 Items Property(Indexer)

Used to interate through all parameters.

Class

TDAParams

Syntax

property Items[Index: integer]: TDAParam; default;
Parameters

Index
Holds an index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all parameters. Index identifies the index
in the range 0..Count - 1. Items can reference a particular parameter by its index,
but the ParamByName method is preferred in order to avoid depending on the order
of the parameters.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15.3 Methods

Methods of the TDAParams class.
For a complete list of the TDAParams class members, see the TDAParams Members
topic.

Public

Name Description

Universal Data Access Components424

© 2013 Enter your company name

FindParam Searches for a parameter
with the specified name.

ParamByName Searches for a parameter
with the specified name.

See Also
 TDAParams Class
 TDAParams Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15.3.1 FindParam Method

Searches for a parameter with the specified name.

Class

TDAParams

Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name.

Return Value

a parameter, if a match was found. Nil otherwise.

Remarks

Use the FindParam method to find a parameter with the name passed in Value. If a
match is found, FindParam returns the parameter. Otherwise, it returns nil. Use this
method rather than a direct reference to the Items property to avoid depending on
the order of the entries.
To locate more than one parameter at a time by name, use the GetParamList
method instead. To get only the value of a named parameter, use the ParamValues
property.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.15.3.2 ParamByName Method

Searches for a parameter with the specified name.

Class

TDAParams

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name.

Reference 425

© 2013 Enter your company name

Return Value

a parameter, if the match was found. otherwise an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the name passed in Value.
If a match was found, ParamByName returns the parameter. Otherwise, an
exception is raised. Use this method rather than a direct reference to the Items
property to avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not
found, use the FindParam method.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16TDATransaction Class

A base class that implements functionality for controlling transactions.
For a list of all members of this type, see TDATransaction members.

Unit

DBAccess

Syntax

TDATransaction = class(TComponent);

Remarks

TDATransaction is a base class for components implementing functionality for
managing transactions.
Do not create instances of TDATransaction. Use descendants of the TDATransaction
class instead.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.1 Members

TDATransaction class overview.

Properties

Name Description

Active Used to determine if the
transaction is active.

DefaultCloseAction Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

Methods

Name Description

Universal Data Access Components426

© 2013 Enter your company name

Commit Commits the current
transaction.

Rollback Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction Begins a new transaction.

Events

Name Description

OnError Used to process errors that
occur during executing a
transaction.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.2 Properties

Properties of the TDATransaction class.
For a complete list of the TDATransaction class members, see the TDATransaction
Members topic.

Public

Name Description

Active Used to determine if the
transaction is active.

DefaultCloseAction Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

See Also
 TDATransaction Class
 TDATransaction Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.2.1 Active Property

Used to determine if the transaction is active.

Class

TDATransaction

Syntax

property Active: boolean;

Remarks

Reference 427

© 2013 Enter your company name

Indicates whether the transaction is active. This property is read-only.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.2.2 DefaultCloseAction Property

Used to specify the transaction behaviour when it is destroyed while being active, or
when one of its connections is closed with the active transaction.

Class

TDATransaction

Syntax

property DefaultCloseAction: TCRTransactionAction default
taRollback;

Remarks

Use DefaultCloseAction to specify the transaction behaviour when it is destroyed
while being active, or when one of its connections is closed with the active
transaction.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.3 Methods

Methods of the TDATransaction class.
For a complete list of the TDATransaction class members, see the TDATransaction
Members topic.

Public

Name Description

Commit Commits the current
transaction.

Rollback Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction Begins a new transaction.

See Also
 TDATransaction Class
 TDATransaction Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.3.1 Commit Method

Commits the current transaction.

Class

TDATransaction

Universal Data Access Components428

© 2013 Enter your company name

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit the current transaction. On commit server
writes permanently all pending data updates associated with the current transaction
to the database, and then finishes the transaction.

See Also

 Rollback
 StartTransaction

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.3.2 Rollback Method

Discards all modifications of data associated with the current transaction and ends
the transaction.

Class

TDATransaction

Syntax

procedure Rollback; virtual;

Remarks

Call Rollback to cancel all data modifications made within the current transaction to
the database server, and finish the transaction.

See Also

 Commit
 StartTransaction

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.3.3 StartTransaction Method

Begins a new transaction.

Class

TDATransaction

Syntax

procedure StartTransaction; virtual;

Remarks

Reference 429

© 2013 Enter your company name

Call the StartTransaction method to begin a new transaction against the database
server. Before calling StartTransaction, an application should check the Active
property. If TDATransaction.Active is True, indicating that a transaction is already in
progress, a subsequent call to StartTransaction will raise EDatabaseError. An active
transaction must be finished by call to Commit or Rollback before call to
StartTransaction. Call to StartTransaction when connection is closed also will raise
EDatabaseError.
Updates, insertions, and deletions that take place after a call to StartTransaction
are held by the server until the application calls Commit to save the changes, or
Rollback to cancel them.

See Also

 Commit
 Rollback

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.4 Events

Events of the TDATransaction class.
For a complete list of the TDATransaction class members, see the TDATransaction
Members topic.

Public

Name Description

OnError Used to process errors that
occur during executing a
transaction.

See Also
 TDATransaction Class
 TDATransaction Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.16.4.1 OnError Event

Used to process errors that occur during executing a transaction.

Class

TDATransaction

Syntax

property OnError: TDATransactionErrorEvent;

Remarks

Add a handler to the OnError event to process errors that occur during executing a
transaction control statements such as Commit, Rollback. Check the E parameter to
get the error code.

Universal Data Access Components430

© 2013 Enter your company name

See Also

 Commit
 Rollback
 StartTransaction

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17TMacro Class

Object that represents the value of a macro.
For a list of all members of this type, see TMacro members.

Unit

DBAccess

Syntax

TMacro = class(TCollectionItem);

Remarks

TMacro object represents the value of a macro. Macro is a variable that holds string
value. You just insert & MacroName in a SQL query text and change the value of
macro by the Macro property editor at design time or the Value property at run
time. At the time of opening query macro is replaced by its value.
If by any reason it is not convenient for you to use the ' & ' symbol as a character of
macro replacement, change the value of the MacroChar variable.

See Also

 TMacros

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.1 Members

TMacro class overview.

Properties

Name Description

Active Used to determine if the
macro should be expanded.

AsDateTime Used to set the TDataTime
value to a macro.

AsFloat Used to set the float value to
a macro.

AsInteger Used to set the integer value
to a macro.

Reference 431

© 2013 Enter your company name

AsString Used to assign the string
value to a macro.

Name Used to identify a particular
macro.

Value Used to set the value to a
macro.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2 Properties

Properties of the TMacro class.
For a complete list of the TMacro class members, see the TMacro Members topic.

Public

Name Description

AsDateTime Used to set the TDataTime
value to a macro.

AsFloat Used to set the float value to
a macro.

AsInteger Used to set the integer value
to a macro.

AsString Used to assign the string
value to a macro.

Published

Name Description

Active Used to determine if the
macro should be expanded.

Name Used to identify a particular
macro.

Value Used to set the value to a
macro.

See Also
 TMacro Class
 TMacro Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.1 Active Property

Used to determine if the macro should be expanded.

Class

TMacro

Syntax

property Active: boolean default True;

Universal Data Access Components432

© 2013 Enter your company name

Remarks

When set to True, the macro will be expanded, otherwise macro definition is
replaced by null string. You can use the Active property to modify the SQL property.
The default value is True.

Example

UniQuery.SQL.Text := 'SELECT * FROM Dept WHERE DeptNo > 20 &Cond1';
UniQuery.Macros[0].Value := 'and DName is NULL';
UniQuery.Macros[0].Active:= False;

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.2 AsDateTime Property

Used to set the TDataTime value to a macro.

Class

TMacro

Syntax

property AsDateTime: TDateTime;

Remarks

Use the AsDataTime property to set the TDataTime value to a macro.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.3 AsFloat Property

Used to set the float value to a macro.

Class

TMacro

Syntax

property AsFloat: double;

Remarks

Use the AsFloat property to set the float value to a macro.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.4 AsInteger Property

Used to set the integer value to a macro.

Class

TMacro

Reference 433

© 2013 Enter your company name

Syntax

property AsInteger: integer;

Remarks

Use the AsInteger property to set the integer value to a macro.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.5 AsString Property

Used to assign the string value to a macro.

Class

TMacro

Syntax

property AsString: string;

Remarks

Use the AsString property to assign the string value to a macro. Read the AsString
property to determine the value of macro represented as a string.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.6 Name Property

Used to identify a particular macro.

Class

TMacro

Syntax

property Name: string;

Remarks

Use the Name property to identify a particular macro.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.17.2.7 Value Property

Used to set the value to a macro.

Class

TMacro

Syntax

property Value: string;

Remarks

Universal Data Access Components434

© 2013 Enter your company name

Use the Value property to set the value to a macro.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18TMacros Class

Controls a list of TMacro objects for the TCustomDASQL.Macros or
TCustomDADataSet components.
For a list of all members of this type, see TMacros members.

Unit

DBAccess

Syntax

TMacros = class(TCollection);

Remarks

Use TMacros to manage a list of TMacro objects for the TCustomDASQL or
TCustomDADataSet components.

See Also

 TMacro

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.1 Members

TMacros class overview.

Properties

Name Description

Items Used to iterate through all
the macros parameters.

Methods

Name Description

AssignValues Copies the macros values
and properties from the
specified source.

Expand Changes the macros in the
passed SQL statement to
their values.

FindMacro Searches for a TMacro object
by its name.

IsEqual Compares itself with another
TMacro object.

MacroByName Used to search for a macro
with the specified name.

Reference 435

© 2013 Enter your company name

Scan Creates a macros from the
passed SQL statement.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.2 Properties

Properties of the TMacros class.
For a complete list of the TMacros class members, see the TMacros Members topic.

Public

Name Description

Items Used to iterate through all
the macros parameters.

See Also
 TMacros Class
 TMacros Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.2.1 Items Property(Indexer)

Used to iterate through all the macros parameters.

Class

TMacros

Syntax

property Items[Index: integer]: TMacro; default;
Parameters

Index
Holds the index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all macros parameters. Index identifies
the index in the range 0..Count - 1.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.3 Methods

Methods of the TMacros class.
For a complete list of the TMacros class members, see the TMacros Members topic.

Public

Name Description

AssignValues Copies the macros values
and properties from the
specified source.

Universal Data Access Components436

© 2013 Enter your company name

Expand Changes the macros in the
passed SQL statement to
their values.

FindMacro Searches for a TMacro object
by its name.

IsEqual Compares itself with another
TMacro object.

MacroByName Used to search for a macro
with the specified name.

Scan Creates a macros from the
passed SQL statement.

See Also
 TMacros Class
 TMacros Class Members

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.3.1 AssignValues Method

Copies the macros values and properties from the specified source.

Class

TMacros

Syntax

procedure AssignValues(Value: TMacros);
Parameters

Value
Holds the source to copy the macros values and properties from.

Remarks

The Assign method copies the macros values and properties from the specified
source. Macros are not recreated. Only the values of macros with matching names
are assigned.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.3.3 FindMacro Method

Searches for a TMacro object by its name.

Class

TMacros

Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the value of a macro to search for.

Reference 437

© 2013 Enter your company name

Return Value

TMacro object if a match was found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the name passed in Value. If a
match is found, FindMacro returns the macro. Otherwise, it returns nil. Use this
method rather than a direct reference to the Items property to avoid depending on
the order of the entries.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.3.4 IsEqual Method

Compares itself with another TMacro object.

Class

TMacros

Syntax

function IsEqual(Value: TMacros): boolean;
Parameters

Value
Holds the values of TMacro objects.

Return Value

True, if the number of TMacro objects and the values of all TMacro objects are
equal.

Remarks

Call the IsEqual method to compare itself with another TMacro object. Returns True
if the number of TMacro objects and the values of all TMacro objects are equal.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.3.5 MacroByName Method

Used to search for a macro with the specified name.

Class

TMacros

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds a name of the macro to search for.

Return Value

TMacro object, if a macro with specified name was found.

Universal Data Access Components438

© 2013 Enter your company name

Remarks

Call the MacroByName method to find a Macro with the name passed in Value. If a
match is found, MacroByName returns the Macro. Otherwise, an exception is raised.
Use this method rather than a direct reference to the Items property to avoid
depending on the order of the entries.
To locate a macro by name without raising an exception if the parameter is not
found, use the FindMacro method.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.18.3.6 Scan Method

Creates a macros from the passed SQL statement.

Class

TMacros

Syntax

procedure Scan(SQL: string);
Parameters

SQL
Holds the passed SQL statement.

Remarks

Call the Scan method to create a macros from the passed SQL statement. On that
all existing TMacro objects are cleared.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.19TPoolingOptions Class

This class allows setting up the behaviour of the connection pool.
For a list of all members of this type, see TPoolingOptions members.

Unit

DBAccess

Syntax

TPoolingOptions = class(TPersistent);

© 1997-2013 Devart. All Rights Reserved.

16.11.1.19.1 Members

TPoolingOptions class overview.

Properties

Name Description

Reference 439

© 2013 Enter your company name

ConnectionLifetime Used to specify the
maximum time during which
an opened connection can
be used by connection pool.

MaxPoolSize Used to specify the
maximum number of
connections that can be
opened in connection pool.

MinPoolSize Used to specify the
minimum number of
connections that can be
opened in the connection
pool.

Validate Used for a connection to be
validated when it is returned
from the pool.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.19.2 Properties

Properties of the TPoolingOptions class.
For a complete list of the TPoolingOptions class members, see the
TPoolingOptions Members topic.

Published

Name Description

ConnectionLifetime Used to specify the
maximum time during which
an opened connection can
be used by connection pool.

MaxPoolSize Used to specify the
maximum number of
connections that can be
opened in connection pool.

MinPoolSize Used to specify the
minimum number of
connections that can be
opened in the connection
pool.

Validate Used for a connection to be
validated when it is returned
from the pool.

See Also
 TPoolingOptions Class
 TPoolingOptions Class Members

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components440

© 2013 Enter your company name

16.11.1.19.2.1 ConnectionLifetime Property

Used to specify the maximum time during which an opened connection can be used
by connection pool.

Class

TPoolingOptions

Syntax

property ConnectionLifetime: integer default 0;

Remarks

Use the ConnectionLifeTime property to specify the maximum time during which an
opened connection can be used by connection pool. Measured in milliseconds. Pool
deletes connections with exceeded connection lifetime when TCustomDAConnection
is about to close. If the ConnectionLifetime property is set to 0 (by default), then
the lifetime of connection is infinity. ConnectionLifetime concerns only inactive
connections in the pool.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.19.2.2 MaxPoolSize Property

Used to specify the maximum number of connections that can be opened in
connection pool.

Class

TPoolingOptions

Syntax

property MaxPoolSize: integer default 100;

Remarks

Specifies the maximum number of connections that can be opened in connection
pool. Once this value is reached, no more connections are opened. The valid values
are 1 and higher.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.19.2.3 MinPoolSize Property

Used to specify the minimum number of connections that can be opened in the
connection pool.

Class

TPoolingOptions

Syntax

property MinPoolSize: integer default 0;

Remarks

Use the MinPoolSize property to specify the minimum number of connections that

Reference 441

© 2013 Enter your company name

can be opened in the connection pool.

© 1997-2013 Devart. All Rights Reserved.

16.11.1.19.2.4 Validate Property

Used for a connection to be validated when it is returned from the pool.

Class

TPoolingOptions

Syntax

property Validate: boolean default False;

Remarks

If the Validate property is set to True, connection will be validated when it is
returned from the pool. By default this option is set to False and pool does not
validate connection when it is returned to be used by a TCustomDAConnection
component.

© 1997-2013 Devart. All Rights Reserved.

16.11.2 Types

Types in the DBAccess unit.

Types

Name Description

TAfterExecuteEvent This type is used for the
TCustomDADataSet.
AfterExecute and
TCustomDASQL.
AfterExecute events.

TAfterFetchEvent This type is used for the
TCustomDADataSet.
AfterFetch event.

TBeforeFetchEvent This type is used for the
TCustomDADataSet.
BeforeFetch event.

TConnectionLostEvent This type is used for the
TCustomDAConnection.
OnConnectionLost event.

TDAConnectionErrorEvent This type is used for the
TCustomDAConnection.
OnError event.

TDATransactionErrorEvent This type is used for the
TDATransaction.OnError
event.

TRefreshOptions Represents the set of
TRefreshOption.

Universal Data Access Components442

© 2013 Enter your company name

TUpdateExecuteEvent This type is used for the
TCustomDADataSet.
AfterUpdateExecute and
TCustomDADataSet.
BeforeUpdateExecute
events.

© 1997-2013 Devart. All Rights Reserved.

16.11.2.1 TAfterExecuteEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterExecute and TCustomDASQL.
AfterExecute events.

Unit

DBAccess

Syntax

TAfterExecuteEvent = procedure (Sender: TObject; Result: boolean)
of object;
Parameters

Sender
An object that raised the event.

Result
The result is True if SQL statement is executed successfully. False otherwise.

© 1997-2013 Devart. All Rights Reserved.

16.11.2.2 TAfterFetchEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterFetch event.

Unit

DBAccess

Syntax

TAfterFetchEvent = procedure (DataSet: TCustomDADataSet) of object
;
Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

© 1997-2013 Devart. All Rights Reserved.

16.11.2.3 TBeforeFetchEvent Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

DBAccess

Reference 443

© 2013 Enter your company name

Syntax

TBeforeFetchEvent = procedure (DataSet: TCustomDADataSet; var
Cancel: boolean) of object;
Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

Cancel
True, if the current fetch operation should be aborted.

© 1997-2013 Devart. All Rights Reserved.

16.11.2.4 TConnectionLostEvent Procedure Reference

This type is used for the TCustomDAConnection.OnConnectionLost event.

Unit

DBAccess

Syntax

TConnectionLostEvent = procedure (Sender: TObject; Component:
TComponent; ConnLostCause: TConnLostCause; var RetryMode:
TRetryMode) of object;
Parameters

Sender
An object that raised the event.

Component

ConnLostCause
The reason of the connection loss.

RetryMode
The application behavior when connection is lost.

© 1997-2013 Devart. All Rights Reserved.

16.11.2.5 TDAConnectionErrorEvent Procedure Reference

This type is used for the TCustomDAConnection.OnError event.

Unit

DBAccess

Syntax

TDAConnectionErrorEvent = procedure (Sender: TObject; E: EDAError;
var Fail: boolean) of object;
Parameters

Sender
An object that raised the event.

E

Universal Data Access Components444

© 2013 Enter your company name

The error information.

Fail
False, if an error dialog should be prevented from being displayed and EAbort
exception should be raised to cancel current operation .

© 1997-2013 Devart. All Rights Reserved.

16.11.2.6 TDATransactionErrorEvent Procedure Reference

This type is used for the TDATransaction.OnError event.

Unit

DBAccess

Syntax

TDATransactionErrorEvent = procedure (Sender: TObject; E: EDAError
; var Fail: boolean) of object;
Parameters

Sender
An object that raised the event.

E
The error code.

Fail
False, if an error dialog should be prevented from being displayed and EAbort
exception to cancel the current operation should be raised.

© 1997-2013 Devart. All Rights Reserved.

16.11.2.7 TRefreshOptions Set

Represents the set of TRefreshOption.

Unit

DBAccess

Syntax

TRefreshOptions = set of TRefreshOption;

© 1997-2013 Devart. All Rights Reserved.

16.11.2.8 TUpdateExecuteEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterUpdateExecute and
TCustomDADataSet.BeforeUpdateExecute events.

Unit

DBAccess

Syntax

TUpdateExecuteEvent = procedure (Sender: TDataSet; StatementTypes:

Reference 445

© 2013 Enter your company name

TStatementTypes; Params: TDAParams) of object;
Parameters

Sender
An object that raised the event.

StatementTypes
Holds the type of the SQL statement being executed.

Params
Holds the parameters with which the SQL statement will be executed.

© 1997-2013 Devart. All Rights Reserved.

16.11.3 Enumerations

Enumerations in the DBAccess unit.

Enumerations

Name Description

TLabelSet Sets the languauge of labels
in the connect dialog.

TRefreshOption Indicates when the editing
record will be refreshed.

TRetryMode Specifies the application
behavior when connection is
lost.

© 1997-2013 Devart. All Rights Reserved.

16.11.3.1 TLabelSet Enumeration

Sets the languauge of labels in the connect dialog.

Unit

DBAccess

Syntax

TLabelSet = (lsCustom, lsEnglish, lsFrench, lsGerman, lsItalian,
lsPolish, lsPortuguese, lsRussian, lsSpanish);

Values

Value Meaning

lsCustom Set the language of labels in the connect dialog manually.

lsEnglish Set English as the language of labels in the connect dialog.

lsFrench Set French as the language of labels in the connect dialog.

lsGerman Set German as the language of labels in the connect dialog.

lsItalian Set Italian as the language of labels in the connect dialog.

lsPolish Set Polish as the language of labels in the connect dialog.

lsPortuguese Set Portuguese as the language of labels in the connect
dialog.

Universal Data Access Components446

© 2013 Enter your company name

lsRussian Set Russian as the language of labels in the connect dialog.

lsSpanish Set Spanish as the language of labels in the connect dialog.

© 1997-2013 Devart. All Rights Reserved.

16.11.3.2 TRefreshOption Enumeration

Indicates when the editing record will be refreshed.

Unit

DBAccess

Syntax

TRefreshOption = (roAfterInsert, roAfterUpdate, roBeforeEdit);

Values

Value Meaning

roAfterInsert Refresh is performed after inserting.

roAfterUpdate Refresh is performed after updating.

roBeforeEdit Refresh is performed by Edit method.

© 1997-2013 Devart. All Rights Reserved.

16.11.3.3 TRetryMode Enumeration

Specifies the application behavior when connection is lost.

Unit

DBAccess

Syntax

TRetryMode = (rmRaise, rmReconnect, rmReconnectExecute);

Values

Value Meaning

rmRaise An exception is raised.

rmReconnect Reconnect is performed and then exception is raised.

rmReconnectExe
cute

Reconnect is performed and abortive operation is
reexecuted. Exception is not raised.

© 1997-2013 Devart. All Rights Reserved.

16.11.4 Variables

Variables in the DBAccess unit.

Variables

Name Description

Reference 447

© 2013 Enter your company name

ChangeCursor When set to True allows
data access components to
change screen cursor for the
execution time.

MacroChar Determinates what character
is used for macros.

© 1997-2013 Devart. All Rights Reserved.

16.11.4.1 ChangeCursor Variable

When set to True allows data access components to change screen cursor for the
execution time.

Unit

DBAccess

Syntax

ChangeCursor: boolean;

© 1997-2013 Devart. All Rights Reserved.

16.11.4.2 MacroChar Variable

Determinates what character is used for macros.

Unit

DBAccess

Syntax

MacroChar: _char;

© 1997-2013 Devart. All Rights Reserved.

16.12 Devart.Dac.DataAdapter

This unit contains implementation of the DADataAdapter class.

Classes

Name Description

DADataAdapter DataAdapter serves as a
bridge between a System.
Data.DataSet and a
TDataSet component (data
source) for retrieving and
saving data.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components448

© 2013 Enter your company name

16.12.1 Classes

Classes in the Devart.Dac.DataAdapter unit.

Classes

Name Description

DADataAdapter DataAdapter serves as a
bridge between a System.
Data.DataSet and a
TDataSet component (data
source) for retrieving and
saving data.

© 1997-2013 Devart. All Rights Reserved.

16.12.1.1 DADataAdapter Class

DataAdapter serves as a bridge between a System.Data.DataSet and a TDataSet
component (data source) for retrieving and saving data.
For a list of all members of this type, see DADataAdapter members.

Unit

Devart.Dac.DataAdapter

Syntax

DADataAdapter = class(TComponent);

Remarks

DataAdapter serves as a bridge between a System.Data.DataSet and a TDataSet
component (data source) for retrieving and saving data. DataAdapter provides this
bridge by mapping DADataAdapter.Fill, which changes the data in the System.Data.
DataSet to match the data in the data source, and DADataAdapter.Update, which
changes the data in the data source to match the data in the System.Data.DataSet.

© 1997-2013 Devart. All Rights Reserved.

16.12.1.1.1 Members

DADataAdapter class overview.

Properties

Name Description

DataSet Used to specify a TDataSet
object which will be used as
data source for
DADataAdapter component.

Methods

Name Description

Reference 449

© 2013 Enter your company name

Fill Adds or refreshes rows in
the System.Data.DataSet to
match those in the TDataSet
and creates a DataTable.

Update Performs Insert, Edit, Delete
for each inserted, updated,
or deleted row in the
specified System.Data.
DataSet due to the ordering
of the rows in the
DataTable.

© 1997-2013 Devart. All Rights Reserved.

16.12.1.1.2 Properties

Properties of the DADataAdapter class.
For a complete list of the DADataAdapter class members, see the DADataAdapter
Members topic.

Public

Name Description

DataSet Used to specify a TDataSet
object which will be used as
data source for
DADataAdapter component.

See Also
 DADataAdapter Class
 DADataAdapter Class Members

© 1997-2013 Devart. All Rights Reserved.

16.12.1.1.2.1 DataSet Property

Used to specify a TDataSet object which will be used as data source for
DADataAdapter component.

Class

DADataAdapter

Syntax

property DataSet: TDataSet;

Remarks

Specify a TDataSet object which will be used as data source for DADataAdapter
component.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components450

© 2013 Enter your company name

16.12.1.1.3 Methods

Methods of the DADataAdapter class.
For a complete list of the DADataAdapter class members, see the DADataAdapter
Members topic.

Public

Name Description

Fill Adds or refreshes rows in
the System.Data.DataSet to
match those in the TDataSet
and creates a DataTable.

Update Performs Insert, Edit, Delete
for each inserted, updated,
or deleted row in the
specified System.Data.
DataSet due to the ordering
of the rows in the
DataTable.

See Also
 DADataAdapter Class
 DADataAdapter Class Members

© 1997-2013 Devart. All Rights Reserved.

16.12.1.1.3.1 Fill Method

Adds or refreshes rows in the System.Data.DataSet to match those in the TDataSet
and creates a DataTable.

Class

DADataAdapter

Syntax

function Fill(Data: DataSet; tableName: string): integer;
Parameters

Data
holds the dataset updates of which are to be commented to the database.

tableName
holds the name of the DataTable.

Return Value

the number of rows successfully inserted into DataSet.

Remarks

Adds or refreshes rows in the System.Data.DataSet to match those in the TDataSet
using the DataSet parameter, and creates a DataTable named tableName. Function
returns the number of rows successfully inserted into DataSet.
TDataSet object associated with DADataAdapter must be valid, but it does not need
to be opened. If TDataSet is closed before Fill is called, it is opened to retrieve data,

Reference 451

© 2013 Enter your company name

then closed. If TDataSet is opened before Fill is called, it remains opened.
If an error is encountered while populating the dataset, rows added prior to the
occurrence of the error remain in the dataset. The remainder of the operation is
aborted.
If TDataSet does not return any rows, fields are created and no rows are added to
the DataSet, and no exception is raised.

See Also

 Update

© 1997-2013 Devart. All Rights Reserved.

16.12.1.1.3.2 Update Method

Performs Insert, Edit, Delete for each inserted, updated, or deleted row in the
specified System.Data.DataSet due to the ordering of the rows in the DataTable.

Class

DADataAdapter

Syntax

function Update(Data: DataSet; tableName: string): integer;
Parameters

Data
holds the dataset updates of which are to be commented to the database.

tableName
holds the name of the DataTable.

Return Value

the number of rows successfully updated from the DataSet.

Remarks

Performs Insert, Edit, Delete for each inserted, updated, or deleted row in the
specified System.Data.DataSet due to the ordering of the rows in the DataTable. It
should be noted that these statements are not performed as a batch process; each
row is updated individually. Function returns the number of rows successfully
updated from the DataSet.

See Also

 Fill

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components452

© 2013 Enter your company name

16.13 Devart.UniDac.DataAdapter

This unit contains implementation of the UniDataAdapter class.

Classes

Name Description

UniDataAdapter A class for using with
TCustomUniDataSet
components and as data
source for retrieving and
saving data.

© 1997-2013 Devart. All Rights Reserved.

16.13.1 Classes

Classes in the Devart.UniDac.DataAdapter unit.

Classes

Name Description

UniDataAdapter A class for using with
TCustomUniDataSet
components and as data
source for retrieving and
saving data.

© 1997-2013 Devart. All Rights Reserved.

16.13.1.1 UniDataAdapter Class

A class for using with TCustomUniDataSet components and as data source for
retrieving and saving data.
For a list of all members of this type, see UniDataAdapter members.

Unit

Devart.UniDac.DataAdapter

Syntax

UniDataAdapter = class(DADataAdapter);

Remarks

The UniDataAdapter class is designed for using with TCustomUniDataSet
components and as data source for retrieving and saving data. UniDataAdapter
provides this bridge by mapping DADataAdapter.Fill, which changes data in System.
Data.DataSet to match data in data source, and DADataAdapter.Update, which
changes data in data source to match data in System.Data.DataSet.

Inheritance Hierarchy

DADataAdapter
 UniDataAdapter

Reference 453

© 2013 Enter your company name

See Also

 DADataAdapter
 TCustomUniDataSet.UpdateObject

© 1997-2013 Devart. All Rights Reserved.

16.13.1.1.1 Members

UniDataAdapter class overview.

Properties

Name Description

DataSet (inherited from DADataAdapter) Used to specify a TDataSet
object which will be used as
data source for
DADataAdapter component.

Methods

Name Description

Fill (inherited from DADataAdapter) Adds or refreshes rows in
the System.Data.DataSet to
match those in the TDataSet
and creates a DataTable.

Update (inherited from DADataAdapter) Performs Insert, Edit, Delete
for each inserted, updated,
or deleted row in the
specified System.Data.
DataSet due to the ordering
of the rows in the
DataTable.

© 1997-2013 Devart. All Rights Reserved.

16.14 LiteCollation

This unit contains types for registering user-defined collations.

Types

Name Description

TLiteAnsiCollation This type is used for
registering a user-defined
non-Unicode collation.

TLiteCollation This type is used for
registering a user-defined
collation.

Universal Data Access Components454

© 2013 Enter your company name

TLiteWideCollation This type is used for
registering a user-defined
Unicode collation.

© 1997-2013 Devart. All Rights Reserved.

16.14.1 Types

Types in the LiteCollation unit.

Types

Name Description

TLiteAnsiCollation This type is used for
registering a user-defined
non-Unicode collation.

TLiteCollation This type is used for
registering a user-defined
collation.

TLiteWideCollation This type is used for
registering a user-defined
Unicode collation.

© 1997-2013 Devart. All Rights Reserved.

16.14.1.1 TLiteAnsiCollation Function Reference

This type is used for registering a user-defined non-Unicode collation.

Unit

LiteCollation

Syntax

TLiteAnsiCollation = function (Str1: AnsiString; Str2:
AnsiString): Integer;

© 1997-2013 Devart. All Rights Reserved.

16.14.1.2 TLiteCollation Function Reference

This type is used for registering a user-defined collation.

Unit

LiteCollation

Syntax

TLiteCollation = function (Str1: string; Str2: string): Integer;

Remarks

Collation parameter data types depend on Delphi version.

Delphi version Parameter data type Description

Reference 455

© 2013 Enter your company name

Delphi 2007 and lower String = AnsiString non-Unicode collation

Delphi 2009 and higher String = WideString Unicode collation

© 1997-2013 Devart. All Rights Reserved.

16.14.1.3 TLiteWideCollation Function Reference

This type is used for registering a user-defined Unicode collation.

Unit

LiteCollation

Syntax

TLiteWideCollation = function (Str1: string; Str2: string):
Integer;

© 1997-2013 Devart. All Rights Reserved.

16.15 LiteFunction

This unit contains types for registering user-defined functions.

Types

Name Description

TLiteFunction This type is used for the
registering a user-defined
function.

© 1997-2013 Devart. All Rights Reserved.

16.15.1 Types

Types in the LiteFunction unit.

Types

Name Description

TLiteFunction This type is used for the
registering a user-defined
function.

© 1997-2013 Devart. All Rights Reserved.

16.15.1.1 TLiteFunction Function Reference

This type is used for the registering a user-defined function.

Unit

LiteFunction

Syntax

TLiteFunction = function (InValues: array of Variant): Variant;

Universal Data Access Components456

© 2013 Enter your company name

Remarks

If the UseUnicode connection specific option is true then input string parameters will
be represented as WideString else input string parameters will be represented as
AnsiString.

© 1997-2013 Devart. All Rights Reserved.

16.16 MemData

This unit contains classes for storing data in memory.

Classes

Name Description

TAttribute TAttribute is not used in
UniDAC.

TBlob Holds large object value for
field and parameter dtBlob,
dtMemo data types.

TCompressedBlob Holds large object value for
field and parameter dtBlob,
dtMemo data types and can
compress its data.

TDBObject A base class for classes that
work with user-defined data
types that have attributes.

TObjectType This class is not used.

TSharedObject A base class that allows to
simplify memory
management for object
referenced by several other
objects.

Types

Name Description

TLocateExOptions Represents the set of
TLocateExOption.

TUpdateRecKinds Represents the set of
TUpdateRecKind.

Enumerations

Name Description

TCompressBlobMode Specifies when the values
should be compressed and
the way they should be
stored.

TConnLostCause Specifies the cause of the
connection loss.

Reference 457

© 2013 Enter your company name

TDANumericType Specifies the format of
storing and representing of
the NUMERIC (DECIMAL)
fields.

TLocateExOption Allows to set additional
search parameters which will
be used by the LocateEx
method.

TSortType Specifies a sort type for
string fields.

TUpdateRecKind Indicates records for which
the ApplyUpdates method
will be performed.

© 1997-2013 Devart. All Rights Reserved.

16.16.1 Classes

Classes in the MemData unit.

Classes

Name Description

TAttribute TAttribute is not used in
UniDAC.

TBlob Holds large object value for
field and parameter dtBlob,
dtMemo data types.

TCompressedBlob Holds large object value for
field and parameter dtBlob,
dtMemo data types and can
compress its data.

TDBObject A base class for classes that
work with user-defined data
types that have attributes.

TObjectType This class is not used.

TSharedObject A base class that allows to
simplify memory
management for object
referenced by several other
objects.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1 TAttribute Class

TAttribute is not used in UniDAC.
For a list of all members of this type, see TAttribute members.

Unit

MemData

Universal Data Access Components458

© 2013 Enter your company name

Syntax

TAttribute = class(System.TObject);

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.1 Members

TAttribute class overview.

Properties

Name Description

AttributeNo Returns an attribute's
ordinal position in object.

DataSize Returns the size of an
attribute value in internal
representation.

DataType Returns the type of data
that was assigned to the
Attribute.

Length Returns the length of the
string for dtString attribute
and precision for dtInteger
and dtFloat attribute.

ObjectType Returns a TObjectType
object for an object
attribute.

Offset Returns an offset of the
attribute value in internal
representation.

Owner Indicates TObjectType that
uses the attribute to
represent one of its
attributes.

Scale Returns the scale of dtFloat
and dtInteger attributes.

Size Returns the size of an
attribute value in external
representation.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2 Properties

Properties of the TAttribute class.
For a complete list of the TAttribute class members, see the TAttribute Members
topic.

Public

Name Description

Reference 459

© 2013 Enter your company name

AttributeNo Returns an attribute's
ordinal position in object.

DataSize Returns the size of an
attribute value in internal
representation.

DataType Returns the type of data
that was assigned to the
Attribute.

Length Returns the length of the
string for dtString attribute
and precision for dtInteger
and dtFloat attribute.

ObjectType Returns a TObjectType
object for an object
attribute.

Offset Returns an offset of the
attribute value in internal
representation.

Owner Indicates TObjectType that
uses the attribute to
represent one of its
attributes.

Scale Returns the scale of dtFloat
and dtInteger attributes.

Size Returns the size of an
attribute value in external
representation.

See Also
 TAttribute Class
 TAttribute Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.1 AttributeNo Property

Returns an attribute's ordinal position in object.

Class

TAttribute

Syntax

property AttributeNo: Word;

Remarks

Use the AttributeNo property to learn an attribute's ordinal position in object, where
1 is the first field.

See Also

Universal Data Access Components460

© 2013 Enter your company name

 TObjectType.Attributes

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.2 DataSize Property

Returns the size of an attribute value in internal representation.

Class

TAttribute

Syntax

property DataSize: Integer;

Remarks

Use the DataSize property to learn the size of an attribute value in internal
representation.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.3 DataType Property

Returns the type of data that was assigned to the Attribute.

Class

TAttribute

Syntax

property DataType: Word;

Remarks

Use the DataType property to discover the type of data that was assigned to the
Attribute.
Possible values: dtDate, dtFloat, dtInteger, dtString, dtObject.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.4 Length Property

Returns the length of the string for dtString attribute and precision for dtInteger
and dtFloat attribute.

Class

TAttribute

Syntax

property Length: Word;

Remarks

Use the Length property to learn the length of the string for dtString attribute and
precision for dtInteger and dtFloat attribute.

Reference 461

© 2013 Enter your company name

See Also

 Scale

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.5 ObjectType Property

Returns a TObjectType object for an object attribute.

Class

TAttribute

Syntax

property ObjectType: TObjectType;

Remarks

Use the ObjectType property to return a TObjectType object for an object attribute.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.6 Offset Property

Returns an offset of the attribute value in internal representation.

Class

TAttribute

Syntax

property Offset: Integer;

Remarks

Use the DataSize property to learn an offset of the attribute value in internal
representation.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.7 Owner Property

Indicates TObjectType that uses the attribute to represent one of its attributes.

Class

TAttribute

Syntax

property Owner: TObjectType;

Remarks

Check the value of the Owner property to determine TObjectType that uses the

Universal Data Access Components462

© 2013 Enter your company name

attribute to represent one of its attributes. Applications should not assign the Owner
property directly.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.8 Scale Property

Returns the scale of dtFloat and dtInteger attributes.

Class

TAttribute

Syntax

property Scale: Word;

Remarks

Use the Scale property to learn the scale of dtFloat and dtInteger attributes.

See Also

 Length

© 1997-2013 Devart. All Rights Reserved.

16.16.1.1.2.9 Size Property

Returns the size of an attribute value in external representation.

Class

TAttribute

Syntax

property Size: Integer;

Remarks

Read Size to learn the size of an attribute value in external representation.
For example:

dtDate
8 (sizeof
(TDateTime)

dtFloat
8 (sizeof
(Double))

dtInteger
4 (sizeof
(Integer))

See Also

 DataSize

Reference 463

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2 TBlob Class

Holds large object value for field and parameter dtBlob, dtMemo data types.
For a list of all members of this type, see TBlob members.

Unit

MemData

Syntax

TBlob = class(TSharedObject);

Remarks

Object TBlob holds large object value for the field and parameter dtBlob, dtMemo,
dtWideMemo data types.

Inheritance Hierarchy

TSharedObject
 TBlob

See Also

 TMemDataSet.GetBlob

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.1 Members

TBlob class overview.

Properties

Name Description

AsString Used to manipulate BLOB
value as string.

AsWideString Used to manipulate BLOB
value as Unicode string.

IsUnicode Gives choice of making
TBlob store and process data
in Unicode format or not.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Size Used to learn the size of the
TBlob value in bytes.

Methods

Name Description

Universal Data Access Components464

© 2013 Enter your company name

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign Sets BLOB value from
another TBlob object.

Clear Deletes the current value in
TBlob object.

LoadFromFile Loads the contents of a file
into a TBlob object.

LoadFromStream Copies the contents of a
stream into the TBlob
object.

Read Acquires a raw sequence of
bytes from the data stored
in TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile Saves the contents of the
TBlob object to a file.

SaveToStream Copies the contents of a
TBlob object to a stream.

Truncate Sets new TBlob size and
discards all data over it.

Write Stores a raw sequence of
bytes into a TBlob object.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.2 Properties

Properties of the TBlob class.
For a complete list of the TBlob class members, see the TBlob Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

AsString Used to manipulate BLOB
value as string.

AsWideString Used to manipulate BLOB
value as Unicode string.

IsUnicode Gives choice of making
TBlob store and process data
in Unicode format or not.

Reference 465

© 2013 Enter your company name

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

Size Used to learn the size of the
TBlob value in bytes.

See Also
 TBlob Class
 TBlob Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.2.1 AsString Property

Used to manipulate BLOB value as string.

Class

TBlob

Syntax

property AsString: string;

Remarks

Use the AsString property to manipulate BLOB value as string.

See Also

 Assign
 AsWideString

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.2.2 AsWideString Property

Used to manipulate BLOB value as Unicode string.

Class

TBlob

Syntax

property AsWideString: string;

Remarks

Use the AsWideString property to manipulate BLOB value as Unicode string.

See Also

Universal Data Access Components466

© 2013 Enter your company name

 Assign
 AsString

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.2.3 IsUnicode Property

Gives choice of making TBlob store and process data in Unicode format or not.

Class

TBlob

Syntax

property IsUnicode: boolean;

Remarks

Set IsUnicode to True if you want TBlob to store and process data in Unicode
format.
Note: changing this property raises an exception if TBlob is not empty.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.2.4 Size Property

Used to learn the size of the TBlob value in bytes.

Class

TBlob

Syntax

property Size: Cardinal;

Remarks

Use the Size property to find out the size of the TBlob value in bytes.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3 Methods

Methods of the TBlob class.
For a complete list of the TBlob class members, see the TBlob Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign Sets BLOB value from
another TBlob object.

Reference 467

© 2013 Enter your company name

Clear Deletes the current value in
TBlob object.

LoadFromFile Loads the contents of a file
into a TBlob object.

LoadFromStream Copies the contents of a
stream into the TBlob
object.

Read Acquires a raw sequence of
bytes from the data stored
in TBlob.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile Saves the contents of the
TBlob object to a file.

SaveToStream Copies the contents of a
TBlob object to a stream.

Truncate Sets new TBlob size and
discards all data over it.

Write Stores a raw sequence of
bytes into a TBlob object.

See Also
 TBlob Class
 TBlob Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.1 Assign Method

Sets BLOB value from another TBlob object.

Class

TBlob

Syntax

procedure Assign(Source: TBlob);
Parameters

Source
Holds the BLOB from which the value to the current object will be assigned.

Remarks

Call the Assign method to set BLOB value from another TBlob object.

See Also

Universal Data Access Components468

© 2013 Enter your company name

 LoadFromStream
 AsString
 AsWideString

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.2 Clear Method

Deletes the current value in TBlob object.

Class

TBlob

Syntax

procedure Clear; virtual;

Remarks

Call the Clear method to delete the current value in TBlob object.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.3 LoadFromFile Method

Loads the contents of a file into a TBlob object.

Class

TBlob

Syntax

procedure LoadFromFile(const FileName: string);
Parameters

FileName
Holds the name of the file from which the TBlob value is loaded.

Remarks

Call the LoadFromFile method to load the contents of a file into a TBlob object.
Specify the name of the file to load into the field as the value of the FileName
parameter.

See Also

 SaveToFile

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.4 LoadFromStream Method

Copies the contents of a stream into the TBlob object.

Class

Reference 469

© 2013 Enter your company name

TBlob

Syntax

procedure LoadFromStream(Stream: TStream); virtual;
Parameters

Stream
Holds the specified stream from which the field's value is copied.

Remarks

Call the LoadFromStream method to copy the contents of a stream into the TBlob
object. Specify the stream from which the field's value is copied as the value of the
Stream parameter.

See Also

 SaveToStream

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.5 Read Method

Acquires a raw sequence of bytes from the data stored in TBlob.

Class

TBlob

Syntax

function Read(Position: Cardinal; Count: Cardinal; Dest: IntPtr):
Cardinal; virtual;
Parameters

Position
Holds the starting point of the byte sequence.

Count
Holds the size of the sequence in bytes.

Dest
Holds a pointer to the memory area where to store the sequence.

Return Value

Actually read byte count if the sequence crosses object size limit.

Remarks

Call the Read method to acquire a raw sequence of bytes from the data stored in
TBlob.
The Position parameter is the starting point of byte sequence which lasts Count
number of bytes. The Dest parameter is a pointer to the memory area where to
store the sequence.
If the sequence crosses object size limit, function will return actually read byte
count.

Universal Data Access Components470

© 2013 Enter your company name

See Also

 Write

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.6 SaveToFile Method

Saves the contents of the TBlob object to a file.

Class

TBlob

Syntax

procedure SaveToFile(const FileName: string);
Parameters

FileName
Holds a string that contains the name of the file.

Remarks

Call the SaveToFile method to save the contents of the TBlob object to a file.
Specify the name of the file as the value of the FileName parameter.

See Also

 LoadFromFile

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.7 SaveToStream Method

Copies the contents of a TBlob object to a stream.

Class

TBlob

Syntax

procedure SaveToStream(Stream: TStream); virtual;
Parameters

Stream
Holds the name of the stream.

Remarks

Call the SaveToStream method to copy the contents of a TBlob object to a stream.
Specify the name of the stream to which the field's value is saved as the value of
the Stream parameter.

Reference 471

© 2013 Enter your company name

See Also

 LoadFromStream

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.8 Truncate Method

Sets new TBlob size and discards all data over it.

Class

TBlob

Syntax

procedure Truncate(NewSize: Cardinal); virtual;
Parameters

NewSize
Holds the new size of TBlob.

Remarks

Call the Truncate method to set new TBlob size and discard all data over it. If
NewSize is greater or equal TBlob.Size, it does nothing.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.2.3.9 Write Method

Stores a raw sequence of bytes into a TBlob object.

Class

TBlob

Syntax

procedure Write(Position: Cardinal; Count: Cardinal; Source:
IntPtr); virtual;
Parameters

Position
Holds the starting point of the byte sequence.

Count
Holds the size of the sequence in bytes.

Source
Holds a pointer to a source memory area.

Remarks

Call the Write method to store a raw sequence of bytes into a TBlob object.
The Position parameter is the starting point of byte sequence which lasts Count
number of bytes. The Source parameter is a pointer to a source memory area.

Universal Data Access Components472

© 2013 Enter your company name

If the value of the Position parameter crosses current size limit of TBlob object,
source data will be appended to the object data.

See Also

 Read

© 1997-2013 Devart. All Rights Reserved.

16.16.1.3 TCompressedBlob Class

Holds large object value for field and parameter dtBlob, dtMemo data types and can
compress its data.
For a list of all members of this type, see TCompressedBlob members.

Unit

MemData

Syntax

TCompressedBlob = class(TBlob);

Remarks

TCompressedBlob is a descendant of the TBlob class. It holds large object value for
field and parameter dtBlob, dtMemo data types and can compress its data. For more
information about using BLOB compression see TCustomDADataSet.Options.
Note: Internal compression functions are available in CodeGear Delphi 2007 for
Win32, Borland Developer Studio 2006, Borland Delphi 2005, and Borland Delphi 7.
To use BLOB compression under Borland Delphi 6, Borland Delphi 5 and Borland C+
+ Builder you should use your own compression functions. To use them set the
CompressProc and UncompressProc variables declared in the MemUtils unit.

Example

type
 TCompressProc = function(dest: IntPtr; destLen: IntPtr; const source: IntPtr; sourceLen: longint): longint;
 TUncompressProc = function(dest: IntPtr; destlen: IntPtr; source: IntPtr; sourceLne: longint): longint;
var
 CompressProc: TCompressProc;
 UncompressProc: TUncompressProc;

Inheritance Hierarchy

TSharedObject
 TBlob
 TCompressedBlob

See Also


TBlob

Reference 473

© 2013 Enter your company name

 TMemDataSet.GetBlob
 TCustomDADataSet.Options

© 1997-2013 Devart. All Rights Reserved.

16.16.1.3.1 Members

TCompressedBlob class overview.

Properties

Name Description

AsString (inherited from TBlob) Used to manipulate BLOB
value as string.

AsWideString (inherited from TBlob) Used to manipulate BLOB
value as Unicode string.

Compressed Used to indicate if the Blob
is compressed.

CompressedSize Used to indicate compressed
size of the Blob data.

IsUnicode (inherited from TBlob) Gives choice of making
TBlob store and process data
in Unicode format or not.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Size (inherited from TBlob) Used to learn the size of the
TBlob value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign (inherited from TBlob) Sets BLOB value from
another TBlob object.

Clear (inherited from TBlob) Deletes the current value in
TBlob object.

LoadFromFile (inherited from TBlob) Loads the contents of a file
into a TBlob object.

LoadFromStream (inherited from TBlob) Copies the contents of a
stream into the TBlob
object.

Read (inherited from TBlob) Acquires a raw sequence of
bytes from the data stored
in TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

Universal Data Access Components474

© 2013 Enter your company name

SaveToFile (inherited from TBlob) Saves the contents of the
TBlob object to a file.

SaveToStream (inherited from TBlob) Copies the contents of a
TBlob object to a stream.

Truncate (inherited from TBlob) Sets new TBlob size and
discards all data over it.

Write (inherited from TBlob) Stores a raw sequence of
bytes into a TBlob object.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.3.2 Properties

Properties of the TCompressedBlob class.
For a complete list of the TCompressedBlob class members, see the
TCompressedBlob Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign (inherited from TBlob) Sets BLOB value from
another TBlob object.

AsString (inherited from TBlob) Used to manipulate BLOB
value as string.

AsWideString (inherited from TBlob) Used to manipulate BLOB
value as Unicode string.

Clear (inherited from TBlob) Deletes the current value in
TBlob object.

Compressed Used to indicate if the Blob
is compressed.

CompressedSize Used to indicate compressed
size of the Blob data.

IsUnicode (inherited from TBlob) Gives choice of making
TBlob store and process data
in Unicode format or not.

LoadFromFile (inherited from TBlob) Loads the contents of a file
into a TBlob object.

LoadFromStream (inherited from TBlob) Copies the contents of a
stream into the TBlob
object.

Read (inherited from TBlob) Acquires a raw sequence of
bytes from the data stored
in TBlob.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Reference 475

© 2013 Enter your company name

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile (inherited from TBlob) Saves the contents of the
TBlob object to a file.

SaveToStream (inherited from TBlob) Copies the contents of a
TBlob object to a stream.

Size (inherited from TBlob) Used to learn the size of the
TBlob value in bytes.

Truncate (inherited from TBlob) Sets new TBlob size and
discards all data over it.

Write (inherited from TBlob) Stores a raw sequence of
bytes into a TBlob object.

See Also
 TCompressedBlob Class
 TCompressedBlob Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.3.2.1 Compressed Property

Used to indicate if the Blob is compressed.

Class

TCompressedBlob

Syntax

property Compressed: boolean;

Remarks

Indicates whether the Blob is compressed. Set this property to True or False to
compress or decompress the Blob.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.3.2.2 CompressedSize Property

Used to indicate compressed size of the Blob data.

Class

TCompressedBlob

Syntax

property CompressedSize: Cardinal;

Remarks

Indicates compressed size of the Blob data.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components476

© 2013 Enter your company name

16.16.1.4 TDBObject Class

A base class for classes that work with user-defined data types that have attributes.
For a list of all members of this type, see TDBObject members.

Unit

MemData

Syntax

TDBObject = class(TSharedObject);

Remarks

TDBObject is a base class for classes that work with user-defined data types that
have attributes.

Inheritance Hierarchy

TSharedObject
 TDBObject

© 1997-2013 Devart. All Rights Reserved.

16.16.1.4.1 Members

TDBObject class overview.

Properties

Name Description

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5 TObjectType Class

This class is not used.
For a list of all members of this type, see TObjectType members.

Unit

MemData

Syntax

Reference 477

© 2013 Enter your company name

TObjectType = class(TSharedObject);

Inheritance Hierarchy

TSharedObject
 TObjectType

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.1 Members

TObjectType class overview.

Properties

Name Description

AttributeCount Used to indicate the number
of attributes of type.

Attributes Used to access separate
attributes.

DataType Used to indicate the type of
object dtObject, dtArray or
dtTable.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Size Used to learn the size of an
object instance.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

AttributeByName Retrieves attribute
information for an attribute
when only the attribute's
name is known.

FindAttribute Indicates whether a
specified Attribute
component is referenced in
the TAttributes object.

Release (inherited from TSharedObject) Decrements the reference
count.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.2 Properties

Properties of the TObjectType class.
For a complete list of the TObjectType class members, see the TObjectType

Universal Data Access Components478

© 2013 Enter your company name

Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

AttributeCount Used to indicate the number
of attributes of type.

Attributes Used to access separate
attributes.

DataType Used to indicate the type of
object dtObject, dtArray or
dtTable.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

Size Used to learn the size of an
object instance.

See Also
 TObjectType Class
 TObjectType Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.2.1 AttributeCount Property

Used to indicate the number of attributes of type.

Class

TObjectType

Syntax

property AttributeCount: Integer;

Remarks

Use the AttributeCount property to determine the number of attributes of type.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.2.2 Attributes Property(Indexer)

Used to access separate attributes.

Class

TObjectType

Reference 479

© 2013 Enter your company name

Syntax

property Attributes[Index: integer]: TAttribute;
Parameters

Index
Holds the attribute's ordinal position.

Remarks

Use the Attributes property to access individual attributes. The value of the Index
parameter corresponds to the AttributeNo property of TAttribute.

See Also

 TAttribute
 FindAttribute

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.2.3 DataType Property

Used to indicate the type of object dtObject, dtArray or dtTable.

Class

TObjectType

Syntax

property DataType: Word;

Remarks

Use the DataType property to determine the type of object dtObject, dtArray or
dtTable.

See Also

 MemData

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.2.4 Size Property

Used to learn the size of an object instance.

Class

TObjectType

Syntax

property Size: Integer;

Universal Data Access Components480

© 2013 Enter your company name

Remarks

Use the Size property to find out the size of an object instance. Size is a sum of all
attribute sizes.

See Also

 TAttribute.Size

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.3 Methods

Methods of the TObjectType class.
For a complete list of the TObjectType class members, see the TObjectType
Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

AttributeByName Retrieves attribute
information for an attribute
when only the attribute's
name is known.

FindAttribute Indicates whether a
specified Attribute
component is referenced in
the TAttributes object.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

See Also
 TObjectType Class
 TObjectType Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.3.1 AttributeByName Method

Retrieves attribute information for an attribute when only the attribute's name is
known.

Class

TObjectType

Reference 481

© 2013 Enter your company name

Syntax

function AttributeByName(Name: string): TAttribute;
Parameters

Name
Holds the name of an existing attribute.

Return Value

a TAttibute object for the specified attribute. Otherwise an exception is raised.

Remarks

Call the AttributeByName method to retrieve attribute information for an attribute
when only the attribute's name is known. Name is the name of an existing
Attribute. AttributeByName returns a TAttibute object for the specified attribute. If
the attribute can not be found, an exception is raised.

See Also

 TAttribute
 FindAttribute
 Attributes

© 1997-2013 Devart. All Rights Reserved.

16.16.1.5.3.2 FindAttribute Method

Indicates whether a specified Attribute component is referenced in the TAttributes
object.

Class

TObjectType

Syntax

function FindAttribute(Name: string): TAttribute;
Parameters

Name
Holds the name of the attribute to search for.

Return Value

TAttribute, if an attribute with a matching name was found. Nil Otherwise.

Remarks

Call FindAttribute to determine if a specified Attribute component is referenced in
the TAttributes object. Name is the name of the Attribute for which to search. If
FindAttribute finds an Attribute with a matching name, it returns the TAttribute.
Otherwise it returns nil.

Universal Data Access Components482

© 2013 Enter your company name

See Also

 TAttribute
 AttributeByName
 Attributes

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6 TSharedObject Class

A base class that allows to simplify memory management for object referenced by
several other objects.
For a list of all members of this type, see TSharedObject members.

Unit

MemData

Syntax

TSharedObject = class(System.TObject);

Remarks

TSharedObject allows to simplify memory management for object referenced by
several other objects. TSharedObject holds a count of references to itself. When any
object (referer object) is going to use TSharedObject, it calls the TSharedObject.
AddRef method. Referer object has to call the TSharedObject.Release method after
using TSharedObject.

See Also

 TBlob
 TObjectType

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6.1 Members

TSharedObject class overview.

Properties

Name Description

RefCount Used to return the count of
reference to a
TSharedObject object.

Methods

Name Description

Reference 483

© 2013 Enter your company name

AddRef Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Release Decrements the reference
count.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6.2 Properties

Properties of the TSharedObject class.
For a complete list of the TSharedObject class members, see the TSharedObject
Members topic.

Public

Name Description

RefCount Used to return the count of
reference to a
TSharedObject object.

See Also
 TSharedObject Class
 TSharedObject Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6.2.1 RefCount Property

Used to return the count of reference to a TSharedObject object.

Class

TSharedObject

Syntax

property RefCount: Integer;

Remarks

Returns the count of reference to a TSharedObject object.

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6.3 Methods

Methods of the TSharedObject class.
For a complete list of the TSharedObject class members, see the TSharedObject
Members topic.

Public

Name Description

Universal Data Access Components484

© 2013 Enter your company name

AddRef Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Release Decrements the reference
count.

See Also
 TSharedObject Class
 TSharedObject Class Members

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6.3.1 AddRef Method

Increments the reference count for the number of references dependent on the
TSharedObject object.

Class

TSharedObject

Syntax

procedure AddRef;

Remarks

Increments the reference count for the number of references dependent on the
TSharedObject object.

See Also

 Release

© 1997-2013 Devart. All Rights Reserved.

16.16.1.6.3.2 Release Method

Decrements the reference count.

Class

TSharedObject

Syntax

procedure Release;

Remarks

Call the Release method to decrement the reference count. When RefCount is 1,
TSharedObject is deleted from memory.

See Also

Reference 485

© 2013 Enter your company name

 AddRef

© 1997-2013 Devart. All Rights Reserved.

16.16.2 Types

Types in the MemData unit.

Types

Name Description

TLocateExOptions Represents the set of
TLocateExOption.

TUpdateRecKinds Represents the set of
TUpdateRecKind.

© 1997-2013 Devart. All Rights Reserved.

16.16.2.1 TLocateExOptions Set

Represents the set of TLocateExOption.

Unit

MemData

Syntax

TLocateExOptions = set of TLocateExOption;

© 1997-2013 Devart. All Rights Reserved.

16.16.2.2 TUpdateRecKinds Set

Represents the set of TUpdateRecKind.

Unit

MemData

Syntax

TUpdateRecKinds = set of TUpdateRecKind;

© 1997-2013 Devart. All Rights Reserved.

16.16.3 Enumerations

Enumerations in the MemData unit.

Enumerations

Name Description

TCompressBlobMode Specifies when the values
should be compressed and
the way they should be
stored.

Universal Data Access Components486

© 2013 Enter your company name

TConnLostCause Specifies the cause of the
connection loss.

TDANumericType Specifies the format of
storing and representing of
the NUMERIC (DECIMAL)
fields.

TLocateExOption Allows to set additional
search parameters which will
be used by the LocateEx
method.

TSortType Specifies a sort type for
string fields.

TUpdateRecKind Indicates records for which
the ApplyUpdates method
will be performed.

© 1997-2013 Devart. All Rights Reserved.

16.16.3.1 TCompressBlobMode Enumeration

Specifies when the values should be compressed and the way they should be
stored.

Unit

MemData

Syntax

TCompressBlobMode = (cbNone, cbClient, cbServer, cbClientServer);

Values

Value Meaning

cbClient Values are compressed and stored as compressed data at
the client side. Before posting data to the server
decompression is performed and data at the server side
stored in the original form. Allows to reduce used client
memory due to increase access time to field values. The
time spent on the opening DataSet and executing Post
increases.

cbClientServer Values are compressed and stored in compressed form.
Allows to decrease the volume of used memory at client
and server sides. Access time to the field values increases
as for cbClient. The time spent on opening DataSet and
executing Post decreases.Note: On using cbServer or
cbClientServer data on the server is stored as compressed.
Other applications can add records in uncompressed format
but can't read and write already compressed data. If
compressed BLOB is partially changed by another
application (if signature was not changed), DAC will
consider its value as NULL.Blob compression is not applied
to Memo fields because of possible cutting.

Reference 487

© 2013 Enter your company name

cbNone Values not compressed. The default value.

cbServer Values are compressed before passing to the server and
store at the server in compressed form. Allows to decrease
database size on the server. Access time to the field values
does not change. The time spent on opening DataSet and
executing Post usually decreases.

© 1997-2013 Devart. All Rights Reserved.

16.16.3.2 TConnLostCause Enumeration

Specifies the cause of the connection loss.

Unit

MemData

Syntax

TConnLostCause = (clUnknown, clExecute, clOpen, clRefresh,
clApply, clServiceQuery, clTransStart, clConnectionApply,
clConnect);

Values

Value Meaning

clApply Connection loss detected during DataSet.ApplyUpdates
(Reconnect/Reexecute possible).

clConnect Connection loss detected during connection establishing
(Reconnect possible).

clConnectionAppl
y

Connection loss detected during Connection.ApplyUpdates
(Reconnect/Reexecute possible).

clExecute Connection loss detected during SQL execution (Reconnect
with exception is possible).

clOpen Connection loss detected during execution of a SELECT
statement (Reconnect with exception possible).

clRefresh Connection loss detected during query opening (Reconnect/
Reexecute possible).

clServiceQuery Connection loss detected during service information
request (Reconnect/Reexecute possible).

clTransStart Connection loss detected during transaction start
(Reconnect/Reexecute possible). clTransStart has less
priority then clConnectionApply.

clUnknown The connection loss reason is unknown.

© 1997-2013 Devart. All Rights Reserved.

16.16.3.3 TDANumericType Enumeration

Specifies the format of storing and representing of the NUMERIC (DECIMAL) fields.

Unit

MemData

Universal Data Access Components488

© 2013 Enter your company name

Syntax

TDANumericType = (ntFloat, ntBCD, ntFmtBCD);

Values

Value Meaning

ntBCD Data is stored on the client side as currency and
represented as TBCDField. This format allows storing data
with precision up to 0,0001.

ntFloat Data stored on the client side is in double format and
represented as TFloatField. The default value.

ntFmtBCD Data is represented as TFMTBCDField. TFMTBCDField gives
greater precision and accuracy than TBCDField, but it is
slower. Not supported for Delphi 5 and C++Builder 5.

© 1997-2013 Devart. All Rights Reserved.

16.16.3.4 TLocateExOption Enumeration

Allows to set additional search parameters which will be used by the LocateEx
method.

Unit

MemData

Syntax

TLocateExOption = (lxCaseInsensitive, lxPartialKey, lxNearest,
lxNext, lxUp, lxPartialCompare);

Values

Value Meaning

lxCaseInsensitive Similar to loCaseInsensitive. Key fields and key values are
matched without regard to the case.

lxNearest LocateEx moves the cursor to a specific record in a dataset
or to the first record in the dataset that is greater than the
values specified in the KeyValues parameter. For this
option to work correctly dataset should be sorted by the
fields the search is performed in. If dataset is not sorted,
the function may return a line that is not connected with
the search condition.

lxNext LocateEx searches from the current record.

lxPartialCompare Similar to lxPartialKey, but the difference is that it can
process value entries in any position. For example, 'HAM'
would match both 'HAMM', 'HAMMER.', and also 'MR
HAMMER'.

lxPartialKey Similar to loPartialKey. Key values can include only a part
of the matching key field value. For example, 'HAM' would
match both 'HAMM' and 'HAMMER.', but not 'MR HAMMER'.

lxUp LocateEx searches from the current record to the first
record.

Reference 489

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.16.3.5 TSortType Enumeration

Specifies a sort type for string fields.

Unit

MemData

Syntax

TSortType = (stCaseSensitive, stCaseInsensitive, stBinary);

Values

Value Meaning

stBinary Sorting by character ordinal values (this comparison is also
case sensitive).

stCaseInsensitive Sorting without case sensitivity.

stCaseSensitive Sorting with case sensitivity.

© 1997-2013 Devart. All Rights Reserved.

16.16.3.6 TUpdateRecKind Enumeration

Indicates records for which the ApplyUpdates method will be performed.

Unit

MemData

Syntax

TUpdateRecKind = (ukUpdate, ukInsert, ukDelete);

Values

Value Meaning

ukDelete ApplyUpdates will be performed for deleted records.

ukInsert ApplyUpdates will be performed for inserted records.

ukUpdate ApplyUpdates will be performed for updated records.

© 1997-2013 Devart. All Rights Reserved.

16.17 MemDS

This unit contains implementation of the TMemDataSet class.

Classes

Name Description

TMemDataSet A base class for working
with data and manipulating
data in memory.

Universal Data Access Components490

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.17.1 Classes

Classes in the MemDS unit.

Classes

Name Description

TMemDataSet A base class for working
with data and manipulating
data in memory.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1 TMemDataSet Class

A base class for working with data and manipulating data in memory.
For a list of all members of this type, see TMemDataSet members.

Unit

MemDS

Syntax

TMemDataSet = class(TDataSet);

Remarks

TMemDataSet derives from the TDataSet database-engine independent set of
properties, events, and methods for working with data and introduces additional
techniques to store and manipulate data in memory.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.1 Members

TMemDataSet class overview.

Properties

Name Description

CachedUpdates Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

Reference 491

© 2013 Enter your company name

LocalUpdate Used to prevent implicit
update of rows on database
server.

Prepared Determines whether a query
is prepared for execution or
not.

UpdateRecordTypes Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyUpdates Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates Clears the cached updates
buffer.

DeferredPost Makes permanent changes
to the database server.

GetBlob Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

Locate Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare Allocates resources and
creates field components for
a dataset.

RestoreUpdates Marks all records in the
cache of updates as
unapplied.

RevertRecord Cancels changes made to
the current record when
cached updates are enabled.

Universal Data Access Components492

© 2013 Enter your company name

SaveToXML Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

OnUpdateError Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2 Properties

Properties of the TMemDataSet class.
For a complete list of the TMemDataSet class members, see the TMemDataSet
Members topic.

Public

Name Description

CachedUpdates Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

Reference 493

© 2013 Enter your company name

LocalUpdate Used to prevent implicit
update of rows on database
server.

Prepared Determines whether a query
is prepared for execution or
not.

UpdateRecordTypes Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending Used to check the status of
the cached updates buffer.

See Also
 TMemDataSet Class
 TMemDataSet Class Members

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.1 CachedUpdates Property

Used to enable or disable the use of cached updates for a dataset.

Class

TMemDataSet

Syntax

property CachedUpdates: boolean default False;

Remarks

Use the CachedUpdates property to enable or disable the use of cached updates for
a dataset. Setting CachedUpdates to True enables updates to a dataset (such as
posting changes, inserting new records, or deleting records) to be stored in an
internal cache on the client side instead of being written directly to the dataset's
underlying database tables. When changes are completed, an application writes all
cached changes to the database in the context of a single transaction.
Cached updates are especially useful for client applications working with remote
database servers. Enabling cached updates brings up the following benefits:
 Fewer transactions and shorter transaction times.
 Minimized network traffic.

The potential drawbacks of enabling cached updates are:
 Other applications can access and change the actual data on the server while

users are editing local copies of data, resulting in an update conflict when
cached updates are applied to the database.
 Other applications cannot access data changes made by an application until its

cached updates are applied to the database.
The default value is False.
Note: When establishing master/detail relationship the CachedUpdates property of
detail dataset works properly only when TCustomDADataSet.Options is set to True.

Universal Data Access Components494

© 2013 Enter your company name

See Also

 UpdatesPending
 TMemDataSet.ApplyUpdates
 RestoreUpdates
 CommitUpdates
 CancelUpdates
 UpdateStatus
 TCustomDADataSet.Options

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.2 IndexFieldNames Property

Used to get or set the list of fields on which the recordset is sorted.

Class

TMemDataSet

Syntax

property IndexFieldNames: string;

Remarks

Use the IndexFieldNames property to get or set the list of fields on which the
recordset is sorted. Specify the name of each column in IndexFieldNames to use as
an index for a table. Ordering of column names is significant. Separate names with
semicolon. The specified columns don't need to be indexed. Set IndexFieldNames to
an empty string to reset the recordset to the sort order originally used when the
recordset's data was first retrieved.
Each field may optionally be followed by the keyword ASC / DESC or CIS / CS / BIN.
Use ASC, DESC keywords to specify a sort direction for the field. If one of these
keywords is not used, the default sort direction for the field is ascending.
Use CIS, CS or BIN keywords to specify a sort type for string fields:
CIS - compare without case sensitivity;
CS - compare with case sensitivity;
BIN - compare by character ordinal values (this comparison is also case sensitive).
If a dataset uses a TCustomDAConnection component, the default value of sort type
depends on the TCustomDAConnection.Options option of the connection. If a
dataset does not use a connection (TVirtualTable dataset), the default is CS.
Read IndexFieldNames to determine the field (or fields) on which the recordset is
sorted.
Ordering is processed locally.
Note: You cannot process ordering by BLOB fields.

Example

The following procedure illustrates how to set IndexFieldNames in response to a
button click:
DataSet1.IndexFieldNames := 'LastName ASC CIS; DateDue DESC';

Reference 495

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.3 LocalConstraints Property

Used to avoid setting the Required property of a TField component for NOT NULL
fields at the time of opening TMemDataSet.

Class

TMemDataSet

Syntax

property LocalConstraints: boolean default True;

Remarks

Use the LocalConstraints property to avoid setting the Required property of a TField
component for NOT NULL fields at the time of opening TMemDataSet. When
LocalConstrains is True, TMemDataSet ignores NOT NULL server constraints. It is
useful for tables that have fields updated by triggers.
LocalConstraints is obsolete, and is only included for backward compatibility.
The default value is True.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.4 LocalUpdate Property

Used to prevent implicit update of rows on database server.

Class

TMemDataSet

Syntax

property LocalUpdate: boolean default False;

Remarks

Set the LocalUpdate property to True to prevent implicit update of rows on database
server. Data changes are cached locally in client memory.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.5 Prepared Property

Determines whether a query is prepared for execution or not.

Class

TMemDataSet

Syntax

property Prepared: boolean;

Remarks

Determines whether a query is prepared for execution or not.

Universal Data Access Components496

© 2013 Enter your company name

See Also

 Prepare

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.6 UpdateRecordTypes Property

Used to indicate the update status for the current record when cached updates are
enabled.

Class

TMemDataSet

Syntax

property UpdateRecordTypes: TUpdateRecordTypes default
[rtModified, rtInserted, rtUnmodified];

Remarks

Use the UpdateRecordTypes property to determine the update status for the current
record when cached updates are enabled. Update status can change frequently as
records are edited, inserted, or deleted. UpdateRecordTypes offers a convenient
method for applications to assess the current status before undertaking or
completing operations that depend on the update status of records.

See Also

 CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.2.7 UpdatesPending Property

Used to check the status of the cached updates buffer.

Class

TMemDataSet

Syntax

property UpdatesPending: boolean;

Remarks

Use the UpdatesPending property to check the status of the cached updates buffer.
If UpdatesPending is True, then there are edited, deleted, or inserted records
remaining in local cache and not yet applied to the database. If UpdatesPending is
False, there are no such records in the cache.

Reference 497

© 2013 Enter your company name

See Also

 CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3 Methods

Methods of the TMemDataSet class.
For a complete list of the TMemDataSet class members, see the TMemDataSet
Members topic.

Public

Name Description

ApplyUpdates Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates Clears the cached updates
buffer.

DeferredPost Makes permanent changes
to the database server.

GetBlob Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

Locate Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare Allocates resources and
creates field components for
a dataset.

RestoreUpdates Marks all records in the
cache of updates as
unapplied.

RevertRecord Cancels changes made to
the current record when
cached updates are enabled.

Universal Data Access Components498

© 2013 Enter your company name

SaveToXML Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TMemDataSet Class
 TMemDataSet Class Members

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.1 ApplyUpdates Method

Writes dataset's pending cached updates to a database.

Class

TMemDataSet

Overload List

Name Description

ApplyUpdates Writes dataset's pending cached
updates to a database.

ApplyUpdates(const UpdateRecKinds:
TUpdateRecKinds)

Writes dataset's pending cached
updates of specified records to a
database.

© 1997-2013 Devart. All Rights Reserved.

Writes dataset's pending cached updates to a database.

Class

TMemDataSet

Syntax

procedure ApplyUpdates; overload; virtual

Remarks

Call the ApplyUpdates method to write a dataset's pending cached updates to a

Reference 499

© 2013 Enter your company name

database. This method passes cached data to the database, but the changes are not
committed to the database if there is an active transaction. An application must
explicitly call the database component's Commit method to commit the changes to
the database if the write is successful, or call the database's Rollback method to
undo the changes if there is an error.
Following a successful write to the database, and following a successful call to a
connection's Commit method, an application should call the CommitUpdates method
to clear the cached update buffer.
Note: The preferred method for updating datasets is to call a connection
component's ApplyUpdates method rather than to call each individual dataset's
ApplyUpdates method. The connection component's ApplyUpdates method takes
care of committing and rolling back transactions and clearing the cache when the
operation is successful.

Example

The following procedure illustrates how to apply a dataset's cached updates to a
database in response to a button click:
procedure ApplyButtonClick(Sender: TObject);
begin
 with MyQuery do
 begin
 Session.StartTransaction;
 try
 ... {Modify data}
 ApplyUpdates; {try to write the updates to the database}
 Session.Commit; {on success, commit the changes}
 except
 RestoreUpdates; {restore update result for applied records}
 Session.Rollback; {on failure, undo the changes}
 raise; {raise the exception to prevent a call to CommitUpdates!}
 end;
 CommitUpdates; {on success, clear the cache}
 end;
end;

See Also


TMemDataSet.CachedUpdates
 TMemDataSet.CancelUpdates
 TMemDataSet.CommitUpdates
 TMemDataSet.UpdateStatus

© 1997-2013 Devart. All Rights Reserved.

Writes dataset's pending cached updates of specified records to a database.

Class

TMemDataSet

Syntax

Universal Data Access Components500

© 2013 Enter your company name

procedure ApplyUpdates(const UpdateRecKinds: TUpdateRecKinds);
overload; virtual
Parameters

UpdateRecKinds
Indicates records for which the ApplyUpdates method will be performed.

Remarks

Call the ApplyUpdates method to write a dataset's pending cached updates of
specified records to a database. This method passes cached data to the database,
but the changes are not committed to the database if there is an active transaction.
An application must explicitly call the database component's Commit method to
commit the changes to the database if the write is successful, or call the database's
Rollback method to undo the changes if there is an error.
Following a successful write to the database, and following a successful call to a
connection's Commit method, an application should call the CommitUpdates method
to clear the cached update buffer.
Note: The preferred method for updating datasets is to call a connection
component's ApplyUpdates method rather than to call each individual dataset's
ApplyUpdates method. The connection component's ApplyUpdates method takes
care of committing and rolling back transactions and clearing the cache when the
operation is successful.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.2 CancelUpdates Method

Clears all pending cached updates from cache and restores dataset in its prior state.

Class

TMemDataSet

Syntax

procedure CancelUpdates;

Remarks

Call the CancelUpdates method to clear all pending cached updates from cache and
restore dataset in its prior state.
It restores the dataset to the state it was in when the table was opened, cached
updates were last enabled, or updates were last successfully applied to the
database.
When a dataset is closed, or the CachedUpdates property is set to False,
CancelUpdates is called automatically.

See Also

 CachedUpdates
 TMemDataSet.ApplyUpdates
 UpdateStatus

Reference 501

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.3 CommitUpdates Method

Clears the cached updates buffer.

Class

TMemDataSet

Syntax

procedure CommitUpdates;

Remarks

Call the CommitUpdates method to clear the cached updates buffer after both a
successful call to ApplyUpdates and a database component's Commit method.
Clearing the cache after applying updates ensures that the cache is empty except
for records that could not be processed and were skipped by the OnUpdateRecord or
OnUpdateError event handlers. An application can attempt to modify the records
still in cache.
CommitUpdates also checks wether there are pending updates in dataset. And if
there are, it calls ApplyUpdates.
Record modifications made after a call to CommitUpdates repopulate the cached
update buffer and require a subsequent call to ApplyUpdates to move them to the
database.

See Also

 CachedUpdates
 TMemDataSet.ApplyUpdates
 UpdateStatus

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.4 DeferredPost Method

Makes permanent changes to the database server.

Class

TMemDataSet

Syntax

procedure DeferredPost;

Remarks

Call DeferredPost to make permanent changes to the database server while
retaining dataset in its state whether it is dsEdit or dsInsert.
Explicit call to the Cancel method after DeferredPost has been applied does not
abandon modifications to a dataset already fixed in database.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components502

© 2013 Enter your company name

16.17.1.1.3.5 GetBlob Method

Retrieves TBlob object for a field or current record when only its name or the field
itself is known.

Class

TMemDataSet

Overload List

Name Description

GetBlob(Field: TField) Retrieves TBlob object for a field or
current record when the field itself is
known.

GetBlob(const FieldName: string) Retrieves TBlob object for a field or
current record when its name is known.

© 1997-2013 Devart. All Rights Reserved.

Retrieves TBlob object for a field or current record when the field itself is known.

Class

TMemDataSet

Syntax

function GetBlob(Field: TField): TBlob; overload
Parameters

Field
Holds an existing TField object.

Return Value

TBlob object that was retrieved.

Remarks

Call the GetBlob method to retrieve TBlob object for a field or current record when
only its name or the field itself is known. FieldName is the name of an existing field.
The field should have MEMO or BLOB type.

© 1997-2013 Devart. All Rights Reserved.

Retrieves TBlob object for a field or current record when its name is known.

Class

TMemDataSet

Syntax

function GetBlob(const FieldName: string): TBlob; overload
Parameters

FieldName
Holds the name of an existing field.

Reference 503

© 2013 Enter your company name

Return Value

TBlob object that was retrieved.

Example

UniQuery1.GetBlob('Comment').SaveToFile('Comment.txt');

See Also


TBlob

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.6 Locate Method

Searches a dataset for a specific record and positions the cursor on it.

Class

TMemDataSet

Overload List

Name Description

Locate(const KeyFields: array of
TField; const KeyValues: variant;
Options: TLocateOptions)

Searches a dataset by the specified
fields for a specific record and positions
cursor on it.

Locate(const KeyFields: string; const
KeyValues: variant; Options:
TLocateOptions)

Searches a dataset by the fields
specified by name for a specific record
and positions the cursor on it.

© 1997-2013 Devart. All Rights Reserved.

Searches a dataset by the specified fields for a specific record and positions cursor
on it.

Class

TMemDataSet

Syntax

function Locate(const KeyFields: array of TField; const KeyValues:
variant; Options: TLocateOptions): boolean; reintroduce;
overload
Parameters

KeyFields
Holds TField objects in which to search.

KeyValues
Holds the variant that specifies the values to match in the key fields.

Universal Data Access Components504

© 2013 Enter your company name

Options
Holds additional search latitude when searching in string fields.

Return Value

True if it finds a matching record, and makes this record the current one.
Otherwise it returns False.

© 1997-2013 Devart. All Rights Reserved.

Searches a dataset by the fields specified by name for a specific record and
positions the cursor on it.

Class

TMemDataSet

Syntax

function Locate(const KeyFields: string; const KeyValues: variant;
Options: TLocateOptions): boolean; overload; override
Parameters

KeyFields
Holds a semicolon-delimited list of field names in which to search.

KeyValues
Holds the variant that specifies the values to match in the key fields.

Options
Holds additional search latitude when searching in string fields.

Return Value

True if it finds a matching record, and makes this record the current one.
Otherwise it returns False.

Remarks

Call the Locate method to search a dataset for a specific record and position cursor
on it.
KeyFields is a string containing a semicolon-delimited list of field names on which to
search.
KeyValues is a variant that specifies the values to match in the key fields. If
KeyFields lists a single field, KeyValues specifies the value for that field on the
desired record. To specify multiple search values, pass a variant array as
KeyValues, or construct a variant array on the fly using the VarArrayOf routine. An
example is provided below.
Options is a set that optionally specifies additional search latitude when searching in
string fields. If Options contains the loCaseInsensitive setting, then Locate ignores
case when matching fields. If Options contains the loPartialKey setting, then Locate
allows partial-string matching on strings in KeyValues. If Options is an empty set,
or if KeyFields does not include any string fields, Options is ignored.
Locate returns True if it finds a matching record, and makes this record the current
one. Otherwise it returns False.
The Locate function works faster when dataset is locally sorted on the KeyFields
fields. Local dataset sorting can be set with the TMemDataSet.IndexFieldNames
property.

Reference 505

© 2013 Enter your company name

Example

An example of specifying multiple search values:
with CustTable do
 Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver', 'P',
 '408-431-1000']), [loPartialKey]);

See Also


TMemDataSet.IndexFieldNames
 TMemDataSet.LocateEx

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.7 LocateEx Method

Excludes features that don't need to be included to the TMemDataSet.Locate
method of TDataSet.

Class

TMemDataSet

Overload List

Name Description

LocateEx(const KeyFields: array of
TField; const KeyValues: variant;
Options: TLocateExOptions)

Excludes features that don't need to be
included to the TMemDataSet.Locate
method of TDataSet by the specified
fields.

LocateEx(const KeyFields: string;
const KeyValues: variant; Options:
TLocateExOptions)

Excludes features that don't need to be
included to the TMemDataSet.Locate
method of TDataSet by the specified
field names.

© 1997-2013 Devart. All Rights Reserved.

Excludes features that don't need to be included to the TMemDataSet.Locate
method of TDataSet by the specified fields.

Class

TMemDataSet

Syntax

function LocateEx(const KeyFields: array of TField; const
KeyValues: variant; Options: TLocateExOptions): boolean;
overload
Parameters

KeyFields

Universal Data Access Components506

© 2013 Enter your company name

Holds TField objects to search in.

KeyValues
Holds the values of the fields to search for.

Options
Holds additional search parameters which will be used by the LocateEx method.

Return Value

True, if a matching record was found. Otherwise returns False.

© 1997-2013 Devart. All Rights Reserved.

Excludes features that don't need to be included to the TMemDataSet.Locate
method of TDataSet by the specified field names.

Class

TMemDataSet

Syntax

function LocateEx(const KeyFields: string; const KeyValues:
variant; Options: TLocateExOptions): boolean; overload
Parameters

KeyFields
Holds the fields to search in.

KeyValues
Holds the values of the fields to search for.

Options
Holds additional search parameters which will be used by the LocateEx method.

Return Value

True, if a matching record was found. Otherwise returns False.

Remarks

Call the LocateEx method when you need some features not to be included to the
TMemDataSet.Locate method of TDataSet.
LocateEx returns True if it finds a matching record, and makes that record the
current one. Otherwise LocateEx returns False.
The LocateEx function works faster when dataset is locally sorted on the KeyFields
fields. Local dataset sorting can be set with the TMemDataSet.IndexFieldNames
property.
Note: Please add the MemData unit to the "uses" list to use the TLocalExOption
enumeration.

See Also

 TMemDataSet.IndexFieldNames
 TMemDataSet.Locate

© 1997-2013 Devart. All Rights Reserved.

Reference 507

© 2013 Enter your company name

16.17.1.1.3.8 Prepare Method

Allocates resources and creates field components for a dataset.

Class

TMemDataSet

Syntax

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate resources and create field components for a
dataset. To learn whether dataset is prepared or not use the Prepared property.
The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically
closed and unprepared.

See Also

 Prepared
 UnPrepare

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.9 RestoreUpdates Method

Marks all records in the cache of updates as unapplied.

Class

TMemDataSet

Syntax

procedure RestoreUpdates;

Remarks

Call the RestoreUpdates method to return the cache of updates to its state before
calling ApplyUpdates. RestoreUpdates marks all records in the cache of updates as
unapplied. It is useful when ApplyUpdates fails.

See Also

 CachedUpdates
 TMemDataSet.ApplyUpdates
 CancelUpdates
 UpdateStatus

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components508

© 2013 Enter your company name

16.17.1.1.3.10 RevertRecord Method

Cancels changes made to the current record when cached updates are enabled.

Class

TMemDataSet

Syntax

procedure RevertRecord;

Remarks

Call the RevertRecord method to undo changes made to the current record when
cached updates are enabled.

See Also

 CachedUpdates
 CancelUpdates

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.11 SaveToXML Method

Saves the current dataset data to a file or a stream in the XML format compatible
with ADO format.

Class

TMemDataSet

Overload List

Name Description

SaveToXML(Destination: TStream) Saves the current dataset data to a
stream in the XML format compatible
with ADO format.

SaveToXML(const FileName: string) Saves the current dataset data to a file
in the XML format compatible with ADO
format.

© 1997-2013 Devart. All Rights Reserved.

Saves the current dataset data to a stream in the XML format compatible with ADO
format.

Class

TMemDataSet

Syntax

procedure SaveToXML(Destination: TStream); overload
Parameters

Reference 509

© 2013 Enter your company name

Destination
Holds a TStream object.

Remarks

Call the SaveToXML method to save the current dataset data to a file or a stream in
the XML format compatible with ADO format.
If the destination file already exists, it is overwritten. It remains open from the first
call to SaveToXML until the dataset is closed. This file can be read by other
applications while it is opened, but they cannot write to the file.
When saving data to a stream, a TStream object must be created and its position
must be set in a preferable value.

See Also

 TVirtualTable.LoadFromFile
 TVirtualTable.LoadFromStream

© 1997-2013 Devart. All Rights Reserved.

Saves the current dataset data to a file in the XML format compatible with ADO
format.

Class

TMemDataSet

Syntax

procedure SaveToXML(const FileName: string); overload
Parameters

FileName
Holds the name of a destination file.

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.12 UnPrepare Method

Frees the resources allocated for a previously prepared query on the server and
client sides.

Class

TMemDataSet

Syntax

procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free the resources allocated for a previously prepared
query on the server and client sides.
Note: When you change the text of a query at runtime, the query is automatically
closed and unprepared.

Universal Data Access Components510

© 2013 Enter your company name

See Also

 Prepare

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.13 UpdateResult Method

Reads the status of the latest call to the ApplyUpdates method while cached
updates are enabled.

Class

TMemDataSet

Syntax

function UpdateResult: TUpdateAction;
Return Value

a value of the TUpdateAction enumeration.

Remarks

Call the UpdateResult method to read the status of the latest call to the
ApplyUpdates method while cached updates are enabled. UpdateResult reflects
updates made on the records that have been edited, inserted, or deleted.
UpdateResult works on the record by record basis and is applicable to the current
record only.

See Also

 CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.3.14 UpdateStatus Method

Indicates the current update status for the dataset when cached updates are
enabled.

Class

TMemDataSet

Syntax

function UpdateStatus: TUpdateStatus; override;
Return Value

a value of the TUpdateStatus enumeration.

Remarks

Call the UpdateStatus method to determine the current update status for the

Reference 511

© 2013 Enter your company name

dataset when cached updates are enabled. Update status can change frequently as
records are edited, inserted, or deleted. UpdateStatus offers a convenient method
for applications to assess the current status before undertaking or completing
operations that depend on the update status of the dataset.

See Also

 CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.4 Events

Events of the TMemDataSet class.
For a complete list of the TMemDataSet class members, see the TMemDataSet
Members topic.

Public

Name Description

OnUpdateError Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord Occurs when a single update
component can not handle
the updates.

See Also
 TMemDataSet Class
 TMemDataSet Class Members

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.4.1 OnUpdateError Event

Occurs when an exception is generated while cached updates are applied to a
database.

Class

TMemDataSet

Syntax

property OnUpdateError: TUpdateErrorEvent;

Remarks

Write the OnUpdateError event handler to respond to exceptions generated when
cached updates are applied to a database.
E is a pointer to an EDatabaseError object from which application can extract an
error message and the actual cause of the error condition. The OnUpdateError
handler can use this information to determine how to respond to the error condition.

Universal Data Access Components512

© 2013 Enter your company name

UpdateKind describes the type of update that generated the error.
UpdateAction indicates the action to take when the OnUpdateError handler exits. On
entry into the handler, UpdateAction is always set to uaFail. If OnUpdateError can
handle or correct the error, set UpdateAction to uaRetry before exiting the error
handler.
The error handler can use the TField.OldValue and TField.NewValue properties to
evaluate error conditions and set TField.NewValue to a new value to reapply. In this
case, set UpdateAction to uaRetry before exiting.
Note: If a call to ApplyUpdates raises an exception and ApplyUpdates is not called
within the context of a try...except block, an error message is displayed. If the
OnUpdateError handler cannot correct the error condition and leaves UpdateAction
set to uaFail, the error message is displayed twice. To prevent redisplay, set
UpdateAction to uaAbort in the error handler.

See Also

 CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

16.17.1.1.4.2 OnUpdateRecord Event

Occurs when a single update component can not handle the updates.

Class

TMemDataSet

Syntax

property OnUpdateRecord: TUpdateRecordEvent;

Remarks

Write the OnUpdateRecord event handler to process updates that cannot be handled
by a single update component, such as implementation of cascading updates,
insertions, or deletions. This handler is also useful for applications that require
additional control over parameter substitution in update components.
UpdateKind describes the type of update to perform.
UpdateAction indicates the action taken by the OnUpdateRecord handler before it
exits. On entry into the handler, UpdateAction is always set to uaFail. If
OnUpdateRecord is successful, it should set UpdateAction to uaApplied before
exiting.

See Also

 CachedUpdates

© 1997-2013 Devart. All Rights Reserved.

Reference 513

© 2013 Enter your company name

16.18 SQLiteUniProvider

This unit contains the TLiteUtils class, that allows to use features of SQLite
database.

Classes

Name Description

TLiteUtils This class class is used for
implementation specific
SQLite operations, such as
database encryption and
collation management.

© 1997-2013 Devart. All Rights Reserved.

16.18.1 Classes

Classes in the SQLiteUniProvider unit.

Classes

Name Description

TLiteUtils This class class is used for
implementation specific
SQLite operations, such as
database encryption and
collation management.

© 1997-2013 Devart. All Rights Reserved.

16.18.1.1 TLiteUtils Class

This class class is used for implementation specific SQLite operations, such as
database encryption and collation management.
For a list of all members of this type, see TLiteUtils members.

Unit

SQLiteUniProvider

Syntax

TLiteUtils = class(System.TObject);

Remarks

Class that implements SQLite specific methods such as EncryptDatabase,
RegisterCollation, UnRegisterCollation.

© 1997-2013 Devart. All Rights Reserved.

16.18.1.1.1 Members

TLiteUtils class overview.

Methods

Universal Data Access Components514

© 2013 Enter your company name

Name Description

EncryptDatabase Is used for new password
setting or existing password
changing.

RegisterAnsiCollation This method is used for
registering a user-defined
non-Unicode collation.

RegisterCollation This method is used for
registering a user-defined
String collation.

RegisterFunction This method is used for
registering a user-defined
function.

RegisterWideCollation This method is used for
registering a user-defined
Unicode collation.

UnRegisterAnsiCollation This method is used for
unregistering a user-defined
non-Unicode collation.

UnRegisterCollation This method is used for
unregistering user-defined
collation.

UnRegisterFunction This method is used for
unregistering a user-defined
function.

UnRegisterWideCollation This method is used for
unregistering a user-defined
Unicode collation.

© 1997-2013 Devart. All Rights Reserved.

16.18.1.1.2 Methods

Methods of the TLiteUtils class.
For a complete list of the TLiteUtils class members, see the TLiteUtils Members
topic.

Public

Name Description

EncryptDatabase Is used for new password
setting or existing password
changing.

RegisterAnsiCollation This method is used for
registering a user-defined
non-Unicode collation.

RegisterCollation This method is used for
registering a user-defined
String collation.

Reference 515

© 2013 Enter your company name

RegisterFunction This method is used for
registering a user-defined
function.

RegisterWideCollation This method is used for
registering a user-defined
Unicode collation.

UnRegisterAnsiCollation This method is used for
unregistering a user-defined
non-Unicode collation.

UnRegisterCollation This method is used for
unregistering user-defined
collation.

UnRegisterFunction This method is used for
unregistering a user-defined
function.

UnRegisterWideCollation This method is used for
unregistering a user-defined
Unicode collation.

See Also
 TLiteUtils Class
 TLiteUtils Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19 Uni

This unit contains main components of UniDAC.

Classes

Name Description

TCustomUniDataSet A base component for
defining functionality for
classes derived from it.

TUniBlob A class holding value of the
BLOB fields and parameters.

TUniConnection A component for setting up
and controlling connection to
such database servers as
Oracle, SQL Server, MySQL,
InterBase, Firebird, and
PostgreSQL.

TUniDataSource TUniDataSource provides an
interface between a UniDAC
dataset components and
data-aware controls on a
form.

TUniEncryptor The class that performs
encrypting and decrypting of
data.

Universal Data Access Components516

© 2013 Enter your company name

TUniMacro Holds the Name, Value, and
Condition for a macro.

TUniMacros Used to manage a list of
TUniMacro objects for a
TUniConnection component.

TUniMetaData A component for obtaining
metainformation about
database objects from the
server.

TUniParam A class that is used to set
the values of individual
parameters passed with
queries or stored
procedures.

TUniParams Used to control TUniParam
objects.

TUniQuery A component for executing
queries and operating record
sets. It also provides flexible
way to update data.

TUniSQL A component for executing
SQL statements and calling
stored procedures on the
database server.

TUniStoredProc A component for accessing
and executing stored
procedures and functions.

TUniTable A component for retrieving
and updating data in a
single table without writing
SQL statements.

TUniTransaction A component for managing
transactions in an
application.

TUniUpdateSQL A component for tuning
update operations for the
DataSet component.

Constants

Name Description

UniDACVersion Read this constant to get
current version number for
UniDAC.

© 1997-2013 Devart. All Rights Reserved.

Reference 517

© 2013 Enter your company name

16.19.1 Classes

Classes in the Uni unit.

Classes

Name Description

TCustomUniDataSet A base component for
defining functionality for
classes derived from it.

TUniBlob A class holding value of the
BLOB fields and parameters.

TUniConnection A component for setting up
and controlling connection to
such database servers as
Oracle, SQL Server, MySQL,
InterBase, Firebird, and
PostgreSQL.

TUniDataSource TUniDataSource provides an
interface between a UniDAC
dataset components and
data-aware controls on a
form.

TUniEncryptor The class that performs
encrypting and decrypting of
data.

TUniMacro Holds the Name, Value, and
Condition for a macro.

TUniMacros Used to manage a list of
TUniMacro objects for a
TUniConnection component.

TUniMetaData A component for obtaining
metainformation about
database objects from the
server.

TUniParam A class that is used to set
the values of individual
parameters passed with
queries or stored
procedures.

TUniParams Used to control TUniParam
objects.

TUniQuery A component for executing
queries and operating record
sets. It also provides flexible
way to update data.

TUniSQL A component for executing
SQL statements and calling
stored procedures on the
database server.

Universal Data Access Components518

© 2013 Enter your company name

TUniStoredProc A component for accessing
and executing stored
procedures and functions.

TUniTable A component for retrieving
and updating data in a
single table without writing
SQL statements.

TUniTransaction A component for managing
transactions in an
application.

TUniUpdateSQL A component for tuning
update operations for the
DataSet component.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1 TCustomUniDataSet Class

A base component for defining functionality for classes derived from it.
For a list of all members of this type, see TCustomUniDataSet members.

Unit

Uni

Syntax

TCustomUniDataSet = class(TCustomDADataSet);

Remarks

TCustomUniDataSet is a base dataset component that defines functionality for
classes derived from it. Applications should never use TCustomUniDataSet objects
directly. Instead of TCustomUniDataSet, they should use TCustomUniDataSet
descendants, such as TUniQuery and TUniTable, which inherit its dataset-related
properties and methods.

Inheritance Hierarchy

TMemDataSet
 TCustomDADataSet
 TCustomUniDataSet

See Also

 TUniQuery
 TUniTable
 TUniStoredProc
 TUniMetaData

© 1997-2013 Devart. All Rights Reserved.

Reference 519

© 2013 Enter your company name

16.19.1.1.1 Members

TCustomUniDataSet class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

Universal Data Access Components520

© 2013 Enter your company name

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

Options Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params Holds the parameters for a
query's SQL statement.

Reference 521

© 2013 Enter your company name

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

Universal Data Access Components522

© 2013 Enter your company name

UpdateObject Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Reference 523

© 2013 Enter your company name

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

Universal Data Access Components524

© 2013 Enter your company name

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

OpenNext Provides second and other
result sets while executing
multiresult query.

ParamByName Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

Reference 525

© 2013 Enter your company name

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2 Properties

Properties of the TCustomUniDataSet class.
For a complete list of the TCustomUniDataSet class members, see the
TCustomUniDataSet Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

Universal Data Access Components526

© 2013 Enter your company name

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Reference 527

© 2013 Enter your company name

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

Universal Data Access Components528

© 2013 Enter your company name

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

Reference 529

© 2013 Enter your company name

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Options Specifies the behaviour of a
TCustomUniDataSet object.

ParamByName (inherited from
TCustomDADataSet)

Sets or uses parameter
information for a specific
parameter based on its
name.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

Universal Data Access Components530

© 2013 Enter your company name

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params Holds the parameters for a
query's SQL statement.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SpecificOptions Used to provide extended
settings for each data
provider.

Reference 531

© 2013 Enter your company name

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateObject Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

Universal Data Access Components532

© 2013 Enter your company name

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

UpdateTransaction Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

See Also
 TCustomUniDataSet Class
 TCustomUniDataSet Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.1 DMLRefresh Property

Used to refresh record by RETURNING clause when insert or update is performed.

Class

TCustomUniDataSet

Syntax

property DMLRefresh: boolean;

Remarks

Use the DMLRefresh property to refresh record by RETURNING clause when insert or
update is performed.
The default value is False.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.2 LastInsertId Property

Can be used with MySQL and PostgreSQL servers to get the value of the ID field
after executing INSERT statement.

Class

TCustomUniDataSet

Syntax

property LastInsertId: int64;

Reference 533

© 2013 Enter your company name

Remarks

The LastInsertId property can be used with MySQL and PostgreSQL servers to get
the value of the ID field after executing INSERT statement.
For MySQL LastInsertId returns the ID generated for an AUTO_INCREMENT column
by the previous query. Use this property after you have performed an INSERT query
into a table that contains an AUTO_INCREMENT field.
For PostgreSQL LastInsertId returns the OID value generated for an OID column in
a table with OIDs by the previous query.
If the query does not perform insertion into a table that contains field of the types
specified above, the value of LastInsertId won't be defined.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.3 Options Property

Specifies the behaviour of a TCustomUniDataSet object.

Class

TCustomUniDataSet

Syntax

property Options: TUniDataSetOptions;

Remarks

The TCustomUniDataSetOptions class publishes properties defined in
TDADataSetOptions. Set the properties of Options to specify the behaviour of a
TCustomUniDataSet object. Their descriptions can be found in the
TCustomDADataSet.Options topic.

See Also

 TCustomDADataSet.Options

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.4 Params Property

Holds the parameters for a query's SQL statement.

Class

TCustomUniDataSet

Syntax

property Params: TUniParams stored False;

Remarks

Contains the parameters for a query's SQL statement.
Access Params at runtime to view and set parameter names, values, and data types
dynamically (at design time use the Parameters editor to set parameter
information). Params is a zero-based array of parameter records. Index specifies

Universal Data Access Components534

© 2013 Enter your company name

the array element to access.
An easier way to set and retrieve parameter values when the name of each
parameter is known is to call ParamByName.

See Also

 TUniParam
 ParamByName

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.5 SpecificOptions Property

Used to provide extended settings for each data provider.

Class

TCustomUniDataSet

Syntax

property SpecificOptions: TSpecificOptionsList;

Remarks

Use the SpecificOptions property to provide extended settings for each data
provider. SpecificOptions can be setup both at design time and run time.
At design time call the component editor by double click on it, and select the
Options tab in the editor. Calling the SpecificOptions editor from the Object
Inspector will open the component editor with Options tab active. Type or select the
provider name, and change values of required properties. Then you can either close
the editor, or select another provider name. Settings for all providers will be saved.
SpecificOptions can be setup at the same time for all providers that supposed to be
used.
All options are applied right before opening or executing. If an option name is not
recognized, an exception is raised and the command is not executed.
For example, when you set the SequenceMode option like it is shown in the second
example, you can execute the script with the Oracle provider, but attempt to use it
with other providers will fail.
You can learn more about server specific options of Oracle, SQL Server, MySQL,
InterBase, PostgreSQL in the corresponding articles.

Example

You can also setup specific options at run time. Either of two formats can be used:
1.Using the provider name in an option name;
2.Not using the provider name in an option name;

In the second case options will be applied to the current provider, namely to the
provider specified in the TUniConnection.ProviderName property of the assigned
connection.
Example 1.
UniQuery1.SpecificOptions.Add('Oracle.ScrollableCursor=True')
UniQuery1.SpecificOptions.Add('InterBase.FieldsAsString=True')
Example 2.

Reference 535

© 2013 Enter your company name

UniQuery1.SpecificOptions.Add('SequenceMode=smInsert')

See Also


TUniConnection.ProviderName
 UniDAC and Oracle
 UniDAC and SQL Server
 UniDAC and MySQL
 UniDAC and InterBase/Firebird
 UniDAC and PostgreSQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.6 Transaction Property

Used to specify the TUniTransaction object in the context of which SQL commands
will be executed, and queries retrieving data will be opened.

Class

TCustomUniDataSet

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to specify the TUniTransaction object in the context of
which SQL commands will be executed, and queries retrieving data will be opened.
If this property is not specified, the default transaction associated with linked
TUniConnection will be used. This transaction will work in AutoCommit mode.

See Also

 TUniTransaction

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.7 UpdateObject Property

Points to an update object component which provides update SQL statements or
update objects for flexible data update.

Class

TCustomUniDataSet

Syntax

property UpdateObject: TUniUpdateSQL;

Remarks

Universal Data Access Components536

© 2013 Enter your company name

The UpdateObject property points to an update object component which provides
update SQL statements or update objects for flexible data update.

See Also

 TUniUpdateSQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.2.8 UpdateTransaction Property

Used to specify the TUniTransaction object in the context of which update
commands will be executed.

Class

TCustomUniDataSet

Syntax

property UpdateTransaction: TUniTransaction;

Remarks

Use the UpdateTransaction property to specify the TUniTransaction object in the
context of which update commands will be executed. Update commands are
commands that are executed automatically, when data is edited in the dataset with
Insert/Post, Edit/Post, or with other similar methods.
If this property is not specified, the transaction object specified in the Transaction
property, or the default transaction associates with linked TUniConnection will be
used. This transaction will wok in AutoCommit mode.

See Also

 Transaction
 TUniTransaction

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.3 Methods

Methods of the TCustomUniDataSet class.
For a complete list of the TCustomUniDataSet class members, see the
TCustomUniDataSet Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

Reference 537

© 2013 Enter your company name

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall Assigns a command that
calls stored procedure
specified by name to the
SQL property.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

Universal Data Access Components538

© 2013 Enter your company name

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

Reference 539

© 2013 Enter your company name

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Universal Data Access Components540

© 2013 Enter your company name

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

OpenNext Provides second and other
result sets while executing
multiresult query.

Options (inherited from TCustomDADataSet) Used to specify the
behaviour of
TCustomDADataSet object.

ParamByName Accesses parameter
information based on a
specified parameter name.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

Reference 541

© 2013 Enter your company name

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomDADataSet) Used to view and set
parameter names, values,
and data types dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

Universal Data Access Components542

© 2013 Enter your company name

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TCustomUniDataSet Class
 TCustomUniDataSet Class Members

Reference 543

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.3.1 CreateProcCall Method

Assigns a command that calls stored procedure specified by name to the SQL
property.

Class

TCustomUniDataSet

Syntax

procedure CreateProcCall(const Name: string);
Parameters

Name
Holds the stored procedure name.

Remarks

Call the CreateProcCall method to assign a command that calls stored procedure
specified by Name to the SQL property. The Overload parameter must contain the
number of overloaded procedures. Retrieves the information about parameters of
the procedure from server. After calling CreateProcCall you can execute stored
procedure by the Execute method.

See Also

 TCustomDADataSet.Execute
 TCustomDAConnection.ExecProc
 TUniStoredProc

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.3.2 FindParam Method

Determines if parameter with the specified name exists in a dataset.

Class

TCustomUniDataSet

Syntax

function FindParam(const Value: string): TUniParam;
Parameters

Value
Holds the name of the param for which to search.

Return Value

the TUniParam object for the specified Name.

Remarks

Call the FindParam method to determine if parameter with the specified name exists

Universal Data Access Components544

© 2013 Enter your company name

in a dataset. Name is the name of the parameter for which to search. If FindParam
finds a parameter with a matching name, it returns the TUniParam object for the
specified Name. Otherwise it returns nil.

See Also

 Params
 ParamByName

© 1997-2013 Devart. All Rights Reserved.

16.19.1.1.3.3 OpenNext Method

Provides second and other result sets while executing multiresult query.

Class

TCustomUniDataSet

Syntax

function OpenNext: boolean;
Return Value

True, if DataSet opens. If there are no record sets to be represented, it will return
False and the current record set will be closed.

Remarks

Call the OpenNext method to get second and other result sets while executing
multiresult query. If DataSet opens, it returns True. If there are no record sets to be
represented, it will return False and the current record set will be closed.

Example

Here is a small piece of code that demonstrates the approach of working with
multiple datasets returned by a multi-statement query:
 UniQuery.SQL.Clear;
 UniQuery.SQL.Add('SELECT * FROM Table1;');
 UniQuery.SQL.Add('SELECT * FROM Table2;');
 UniQuery.SQL.Add('SELECT * FROM Table3;');
 UniQuery.SQL.Add('SELECT * FROM Table4;');
 UniQuery.SQL.Add('SELECT * FROM Table5;');
 UniQuery.FetchAll := False;
 UniQuery.Open;
 repeat
 // < do something >
 until not UniQuery.OpenNext;

© 1997-2013 Devart. All Rights Reserved.

Reference 545

© 2013 Enter your company name

16.19.1.1.3.4 ParamByName Method

Accesses parameter information based on a specified parameter name.

Class

TCustomUniDataSet

Syntax

function ParamByName(const Value: string): TUniParam;
Parameters

Value
Holds the name of the parameter for which to retrieve information.

Return Value

a TUniParam object.

Remarks

Call the ParamByName method to set or use parameter information for a specific
parameter based on its name. Name is the name of the parameter for which to
retrieve information. ParamByName is used to set an parameter's value at runtime
and returns TUniParam object.

Example

For example, the following statement retrieves the current value of a parameter
called "Contact" into an edit box:
Edit1.Text := Query1.ParamsByName('Contact').AsString;

See Also


TUniParam
 Params
 FindParam

© 1997-2013 Devart. All Rights Reserved.

16.19.1.2 TUniBlob Class

A class holding value of the BLOB fields and parameters.
For a list of all members of this type, see TUniBlob members.

Unit

Uni

Syntax

TUniBlob = class(TCompressedBlob);

Remarks

Universal Data Access Components546

© 2013 Enter your company name

TUniBlob is a descendant of TCompressedBlob class. It holds value of the BLOB
fields and parameters.
Note: You can affect performance of reading/writing BLOBs by changing MemData.
DefaultPieceSize variable to different value. DefaultPieceSize defines size of data
portion transferred through network at the single call.

Inheritance Hierarchy

TSharedObject
 TBlob
 TCompressedBlob
 TUniBlob

See Also

 TCompressedBlob
 TMemDataSet.GetBlob

© 1997-2013 Devart. All Rights Reserved.

16.19.1.2.1 Members

TUniBlob class overview.

Properties

Name Description

AsString (inherited from TBlob) Used to manipulate BLOB
value as string.

AsWideString (inherited from TBlob) Used to manipulate BLOB
value as Unicode string.

Compressed (inherited from TCompressedBlob) Used to indicate if the Blob
is compressed.

CompressedSize (inherited from
TCompressedBlob)

Used to indicate compressed
size of the Blob data.

IsUnicode (inherited from TBlob) Gives choice of making
TBlob store and process data
in Unicode format or not.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a
TSharedObject object.

Size (inherited from TBlob) Used to learn the size of the
TBlob value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Reference 547

© 2013 Enter your company name

Assign (inherited from TBlob) Sets BLOB value from
another TBlob object.

Clear (inherited from TBlob) Deletes the current value in
TBlob object.

LoadFromFile (inherited from TBlob) Loads the contents of a file
into a TBlob object.

LoadFromStream (inherited from TBlob) Copies the contents of a
stream into the TBlob
object.

Read (inherited from TBlob) Acquires a raw sequence of
bytes from the data stored
in TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile (inherited from TBlob) Saves the contents of the
TBlob object to a file.

SaveToStream (inherited from TBlob) Copies the contents of a
TBlob object to a stream.

Truncate (inherited from TBlob) Sets new TBlob size and
discards all data over it.

Write (inherited from TBlob) Stores a raw sequence of
bytes into a TBlob object.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3 TUniConnection Class

A component for setting up and controlling connection to such database servers as
Oracle, SQL Server, MySQL, InterBase, Firebird, and PostgreSQL.
For a list of all members of this type, see TUniConnection members.

Unit

Uni

Syntax

TUniConnection = class(TCustomDAConnection);

Remarks

TUniConnection component is used to maintain connection to databases such as
Oracle, SQL Server, MySQL, InterBase, Firebird, and PostgreSQL. Before connect
you should provide connection settings such as ProviderName, Server, Username,
Password, Port, and Database. Some extended connection options can be specified
with the TUniConnection.SpecificOptions. Set of properties that have to be assigned
vary depending on used provider (the ProviderName property). To establish a
database connection, it is necessary to call the TCustomDAConnection.Connect
method or set the Connect property to True. There are also many properties at the
connection level that affect default behavior of the queries executed within this
session. Furthermore, you can control transactions using methods of this class.
All components which are dedicated to perform data access, such as TUniQuery,
TUniSQL, TUniScript, must have their Connection property assigned with one of

Universal Data Access Components548

© 2013 Enter your company name

TUniConnection instances.

Inheritance Hierarchy

TCustomDAConnection
 TUniConnection

See Also

 TCustomDADataSet.Connection
 TUniSQL.Connection

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.1 Members

TUniConnection class overview.

Properties

Name Description

ConnectDialog (inherited from
TCustomDAConnection)

Allows to link a
TCustomConnectDialog
component.

ConvertEOL (inherited from
TCustomDAConnection)

Allows customizing line
breaks in string fields and
parameters.

Database Used to specify the database
name that is a default
source of data for SQL
queries once a connection is
established.

InTransaction (inherited from
TCustomDAConnection)

Indicates whether the
transaction is active.

LoginPrompt (inherited from
TCustomDAConnection)

Specifies whether a login
dialog appears immediately
before opening a new
connection.

Macros Holds a collection of macros
that can be used in Unified
SQL statements.

Options (inherited from TCustomDAConnection) Specifies the connection
behavior.

Password (inherited from
TCustomDAConnection)

Serves to supply a password
for login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from
TCustomDAConnection)

Specifies the behaviour of
connection pool.

Reference 549

© 2013 Enter your company name

Port Used to specify the port
number for TCP/IP
connection.

ProviderName Used to switch the current
data access provider.

Server (inherited from TCustomDAConnection) Serves to supply the server
name for login.

SpecificOptions Used to provide extended
settings for each data
provider.

Username (inherited from
TCustomDAConnection)

Used to supply a user name
for login.

Methods

Name Description

ActiveMacroValueByName Returns the value of the
specified macro for the
current provider.

ApplyUpdates (inherited from
TCustomDAConnection)

Overloaded. Applies changes
in datasets.

AssignConnect Shares database connection
between the TUniConnection
components.

Commit (inherited from TCustomDAConnection) Commits current
transaction.

CommitRetaining Permanently stores all
changes of data associated
with the default database
transaction to the database
and then retains the
transaction context.

Connect (inherited from TCustomDAConnection
)

Establishes a connection to
the server.

CreateDataSet Creates an instance of the
TCustomUniDataSet class
and assigns its
TCustomDADataSet.
Connection property.

CreateSQL Creates an instance of the
TUniSQL class and assigns
its TUniSQL.Connection
property.

CreateTransaction Creates an instance of the
TUniTransaction class and
adds itself to its
TUniTransaction.Connections
.

Disconnect (inherited from
TCustomDAConnection)

Performs disconnect.

Universal Data Access Components550

© 2013 Enter your company name

ExecProc (inherited from TCustomDAConnection
)

Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx (inherited from
TCustomDAConnection)

Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomDAConnection
)

Executes a SQL statement
with parameters.

ExecSQLEx (inherited from
TCustomDAConnection)

Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames (inherited from
TCustomDAConnection)

Returns a database list from
the server.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored
procedures from the server.

GetTableNames (inherited from
TCustomDAConnection)

Provides a list of available
tables names.

MonitorMessage (inherited from
TCustomDAConnection)

Sends a specified message
through the
TCustomDASQLMonitor
component.

ParamByName Provides access to output
parameters and their values
after executing an SQL
statement with the
TCustomDAConnection.
ExecSQL method.

ReleaseSavepoint Destroys the specified
savepoint without affecting
any work that has been
performed after its creation.

RemoveFromPool (inherited from
TCustomDAConnection)

Marks the connection that
should not be returned to
the pool after disconnect.

Rollback (inherited from TCustomDAConnection
)

Discards all current data
changes and ends
transaction.

RollbackRetaining Used to roll back all changes
of data associated with the
transaction and retain the
transaction context.

RollbackToSavepoint Cancels all updates for the
current transaction.

Savepoint Defines a point in the
transaction to which you can
later roll back.

StartTransaction Overloaded. Starts a new
transaction at the server.

Events

Reference 551

© 2013 Enter your company name

Name Description

OnConnectionLost (inherited from
TCustomDAConnection)

This event occurs when
connection was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an
error has arisen in the
connection.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.2 Properties

Properties of the TUniConnection class.
For a complete list of the TUniConnection class members, see the TUniConnection
Members topic.

Public

Name Description

ApplyUpdates (inherited from
TCustomDAConnection)

Overloaded. Applies changes
in datasets.

Commit (inherited from TCustomDAConnection) Commits current
transaction.

Connect (inherited from TCustomDAConnection
)

Establishes a connection to
the server.

ConnectDialog (inherited from
TCustomDAConnection)

Allows to link a
TCustomConnectDialog
component.

ConvertEOL (inherited from
TCustomDAConnection)

Allows customizing line
breaks in string fields and
parameters.

CreateDataSet (inherited from
TCustomDAConnection)

Creates a dataset
component.

CreateSQL (inherited from
TCustomDAConnection)

Creates a component for
queries execution.

Disconnect (inherited from
TCustomDAConnection)

Performs disconnect.

ExecProc (inherited from TCustomDAConnection
)

Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx (inherited from
TCustomDAConnection)

Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomDAConnection
)

Executes a SQL statement
with parameters.

ExecSQLEx (inherited from
TCustomDAConnection)

Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames (inherited from
TCustomDAConnection)

Returns a database list from
the server.

Universal Data Access Components552

© 2013 Enter your company name

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored
procedures from the server.

GetTableNames (inherited from
TCustomDAConnection)

Provides a list of available
tables names.

InTransaction (inherited from
TCustomDAConnection)

Indicates whether the
transaction is active.

LoginPrompt (inherited from
TCustomDAConnection)

Specifies whether a login
dialog appears immediately
before opening a new
connection.

MonitorMessage (inherited from
TCustomDAConnection)

Sends a specified message
through the
TCustomDASQLMonitor
component.

OnConnectionLost (inherited from
TCustomDAConnection)

This event occurs when
connection was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an
error has arisen in the
connection.

Options (inherited from TCustomDAConnection) Specifies the connection
behavior.

Password (inherited from
TCustomDAConnection)

Serves to supply a password
for login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from
TCustomDAConnection)

Specifies the behaviour of
connection pool.

RemoveFromPool (inherited from
TCustomDAConnection)

Marks the connection that
should not be returned to
the pool after disconnect.

Rollback (inherited from TCustomDAConnection
)

Discards all current data
changes and ends
transaction.

Server (inherited from TCustomDAConnection) Serves to supply the server
name for login.

StartTransaction (inherited from
TCustomDAConnection)

Begins a new user
transaction.

Username (inherited from
TCustomDAConnection)

Used to supply a user name
for login.

Published

Name Description

Database Used to specify the database
name that is a default
source of data for SQL
queries once a connection is
established.

Reference 553

© 2013 Enter your company name

Macros Holds a collection of macros
that can be used in Unified
SQL statements.

Port Used to specify the port
number for TCP/IP
connection.

ProviderName Used to switch the current
data access provider.

SpecificOptions Used to provide extended
settings for each data
provider.

See Also
 TUniConnection Class
 TUniConnection Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.2.1 Database Property

Used to specify the database name that is a default source of data for SQL queries
once a connection is established.

Class

TUniConnection

Syntax

property Database: string;

Remarks

Use the Database property to specify the database name that is a default source of
data for SQL queries once a connection is established.
Altering the Database property makes new database name take effect immediately.
This property is available for SQL Server and MySQL providers.
SQL Server provider note:
When Database is not assigned, the SQL Server provider will use the default
database for the current SQL Server login specified in the TCustomDAConnection.
Username property.

See Also

 TCustomDAConnection.Server
 TCustomDAConnection.Username
 TCustomDAConnection.Password

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components554

© 2013 Enter your company name

16.19.1.3.2.2 Macros Property

Holds a collection of macros that can be used in Unified SQL statements.

Class

TUniConnection

Syntax

property Macros: TUniMacros stored IsMacrosStored;

Remarks

The Macros property holds a collection of macros that can be used in Unified SQL
statements.
Connection Macros are defined by "{MacroName}" and affect all associated
datasets.
To work with Macros you can use traditional or "predefined" way.
For detailed information on using macros refer to article Unified SQL .

Example

Here is the traditional way to work with macros:
if UniConnection.ProviderName = 'Oracle' then
 UniConnection.MacroByName('tablename').Value := 'dept'
else
if UniConnection.ProviderName = 'MySql' then
 UniConnection.MacroByName('tablename').Value := 'test.dept';

See Also


Unified SQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.2.3 Port Property

Used to specify the port number for TCP/IP connection.

Class

TUniConnection

Syntax

property Port: integer default 0;

Remarks

Use the Port property to specify the port number for TCP/IP connection. This
property is available only for the MySQL provider.
The default value is 0.

Reference 555

© 2013 Enter your company name

See Also

 TCustomDAConnection.Server
 Database

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.2.4 ProviderName Property

Used to switch the current data access provider.

Class

TUniConnection

Syntax

property ProviderName: string;

Remarks

UniDAC consists of two constituents. The first constituent is the general UniDAC
Engine that provides unified programming interface for developers. The second
constituent is the data access layer which consists of data access providers. These
provides are intended for interacting between UniDAC Engine and database servers.
The ProviderName property is intended to switch the current data access provider.
If the value of ProviderName is changed while a connection is active, the connection
will be forced to close. The following four providers names are acceptable:
 Oracle - provider for Oracle;
 SQL Server - provider for Microsoft SQL Server;
 MySQL - provider for MySQL;
 InterBase - provider for InterBase, Firebird, and Yaffil database servers.
 PostgreSQL - provider for PostgreSQL.

See Also

 TCustomDAConnection.Server
 Database
 Port

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.2.5 SpecificOptions Property

Used to provide extended settings for each data provider.

Class

TUniConnection

Syntax

property SpecificOptions: TSpecificOptionsList;

Remarks

Use the SpecificOptions property to provide extended settings for each data

Universal Data Access Components556

© 2013 Enter your company name

provider. SpecificOptions can be setup both in design time and run time.
At design time call the component editor by double click on it, and select the
Options tab in the editor. Calling the SpecificOptions editor from the Object
Inspector will open the component editor with Options tab active. Type or select the
provider name, and change values of required properties. Then you can either close
the editor, or select another provider name. Settings for all providers will be saved.
SpecificOptions can be setup at the same time for all providers that supposed to be
used.
All options are applied at the connect time. If an option name is not recognized, an
exception is raised and connection is not established.
For example, when you set the Direct option like it is shown in the second example,
you can connect with the Oracle and MySQL provider, but attempt to connect with
SQL Server and InterBase providers will fail.

Example

You can also setup specific options at run time. Either of two formats can be used:
1.Using the provider name in an option name;
2.Not using the provider name in an option name;

In the second case options will be applied to the current provider, namely to the
provider specified in the ProviderName property.
Example 1.
UniConnection1.SpecificOptions.Add('Oracle.Direct=True')
UniConnection1.SpecificOptions.Add('InterBase.CharLength=0')
Example 2.
UniConnection1.SpecificOptions.Add('Direct=True')

See Also


ProviderName
 UniDAC and Oracle
 UniDAC and SQL Server
 UniDAC and MySQL
 UniDAC and InterBase/Firebird
 UniDAC and PostgreSQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3 Methods

Methods of the TUniConnection class.
For a complete list of the TUniConnection class members, see the TUniConnection
Members topic.

Public

Name Description

ActiveMacroValueByName Returns the value of the
specified macro for the
current provider.

Reference 557

© 2013 Enter your company name

ApplyUpdates (inherited from
TCustomDAConnection)

Overloaded. Applies changes
in datasets.

AssignConnect Shares database connection
between the TUniConnection
components.

Commit (inherited from TCustomDAConnection) Commits current
transaction.

CommitRetaining Permanently stores all
changes of data associated
with the default database
transaction to the database
and then retains the
transaction context.

Connect (inherited from TCustomDAConnection
)

Establishes a connection to
the server.

ConnectDialog (inherited from
TCustomDAConnection)

Allows to link a
TCustomConnectDialog
component.

ConvertEOL (inherited from
TCustomDAConnection)

Allows customizing line
breaks in string fields and
parameters.

CreateDataSet Creates an instance of the
TCustomUniDataSet class
and assigns its
TCustomDADataSet.
Connection property.

CreateSQL Creates an instance of the
TUniSQL class and assigns
its TUniSQL.Connection
property.

CreateTransaction Creates an instance of the
TUniTransaction class and
adds itself to its
TUniTransaction.Connections
.

Disconnect (inherited from
TCustomDAConnection)

Performs disconnect.

ExecProc (inherited from TCustomDAConnection
)

Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx (inherited from
TCustomDAConnection)

Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomDAConnection
)

Executes a SQL statement
with parameters.

ExecSQLEx (inherited from
TCustomDAConnection)

Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames (inherited from
TCustomDAConnection)

Returns a database list from
the server.

Universal Data Access Components558

© 2013 Enter your company name

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored
procedures from the server.

GetTableNames (inherited from
TCustomDAConnection)

Provides a list of available
tables names.

InTransaction (inherited from
TCustomDAConnection)

Indicates whether the
transaction is active.

LoginPrompt (inherited from
TCustomDAConnection)

Specifies whether a login
dialog appears immediately
before opening a new
connection.

MonitorMessage (inherited from
TCustomDAConnection)

Sends a specified message
through the
TCustomDASQLMonitor
component.

OnConnectionLost (inherited from
TCustomDAConnection)

This event occurs when
connection was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an
error has arisen in the
connection.

Options (inherited from TCustomDAConnection) Specifies the connection
behavior.

ParamByName Provides access to output
parameters and their values
after executing an SQL
statement with the
TCustomDAConnection.
ExecSQL method.

Password (inherited from
TCustomDAConnection)

Serves to supply a password
for login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from
TCustomDAConnection)

Specifies the behaviour of
connection pool.

ReleaseSavepoint Destroys the specified
savepoint without affecting
any work that has been
performed after its creation.

RemoveFromPool (inherited from
TCustomDAConnection)

Marks the connection that
should not be returned to
the pool after disconnect.

Rollback (inherited from TCustomDAConnection
)

Discards all current data
changes and ends
transaction.

RollbackRetaining Used to roll back all changes
of data associated with the
transaction and retain the
transaction context.

RollbackToSavepoint Cancels all updates for the
current transaction.

Reference 559

© 2013 Enter your company name

Savepoint Defines a point in the
transaction to which you can
later roll back.

Server (inherited from TCustomDAConnection) Serves to supply the server
name for login.

StartTransaction Overloaded. Starts a new
transaction at the server.

Username (inherited from
TCustomDAConnection)

Used to supply a user name
for login.

See Also
 TUniConnection Class
 TUniConnection Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.1 ActiveMacroValueByName Method

Returns the value of the specified macro for the current provider.

Class

TUniConnection

Syntax

function ActiveMacroValueByName(const Name: string): Variant;
Parameters

Name
The name of the macro.

Return Value

The value of the specified macro.

See Also

 Unified SQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.2 AssignConnect Method

Shares database connection between the TUniConnection components.

Class

TUniConnection

Syntax

procedure AssignConnect(Source: TUniConnection);
Parameters

Universal Data Access Components560

© 2013 Enter your company name

Source
Preconnected TUniConnection component which connection is to be shared with
the current TUniConnection component.

Remarks

Use the AssignConnect method to share database connection between the
TUniConnection components.
AssignConnect assumes that the Source parameter points to a preconnected
TUniConnection component which connection is to be shared with the current
TUniConnection component. Note that AssignConnect doesn't make any references
to the Source TUniConnection component. So before disconnecting parent
TUniConnection component call AssignConnect(Nil) or the Disconnect method for all
assigned connections.

See Also

 TCustomDAConnection.Connect

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.3 CommitRetaining Method

Permanently stores all changes of data associated with the default database
transaction to the database and then retains the transaction context.

Class

TUniConnection

Syntax

procedure CommitRetaining;

Remarks

Call the CommitRetaining method to permanently store to the database server all
changes of data associated with the default database transaction and then retain
the transaction context.

See Also

 TCustomDAConnection.Commit
 TCustomDAConnection.StartTransaction

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.4 CreateDataSet Method

Creates an instance of the TCustomUniDataSet class and assigns its
TCustomDADataSet.Connection property.

Class

Reference 561

© 2013 Enter your company name

TUniConnection

Syntax

function CreateDataSet: TCustomDADataSet; override;
Return Value

an instance of the class.

Remarks

Call the CreateDataSet method to create an instance of the TCustomUniDataSet
class and assign its TCustomDADataSet.Connection property.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.5 CreateSQL Method

Creates an instance of the TUniSQL class and assigns its TUniSQL.Connection
property.

Class

TUniConnection

Syntax

function CreateSQL: TCustomDASQL; override;
Return Value

an instance of the class.

Remarks

Call the CreateSQL method creates an instance of the TUniSQL class and assign its
TUniSQL.Connection property.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.6 CreateTransaction Method

Creates an instance of the TUniTransaction class and adds itself to its
TUniTransaction.Connections.

Class

TUniConnection

Syntax

function CreateTransaction: TDATransaction; override;
Return Value

an instance of the class.

Remarks

Call the CreateTransaction method to create an instance of the TUniTransaction
class and add itself to its TUniTransaction.Connections.

Universal Data Access Components562

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.7 ParamByName Method

Provides access to output parameters and their values after executing an SQL
statement with the TCustomDAConnection.ExecSQL method.

Class

TUniConnection

Syntax

function ParamByName(const Name: string): TUniParam;
Parameters

Name
Holds the parameter name (should be equal to the one that occurred in the SQL
statement).

Return Value

a reference for the matching parameter.

Remarks

Call the ParamByName method to get access to output parameters and their values
after executing an SQL statement with the TCustomDAConnection.ExecSQL method.
The Name parameter should equal to the parameter name as it occurred in the SQL
statement.
This method implicitly calls the TUniSQL.ParamByName method of TUniSQL.

See Also

 TCustomDAConnection.ExecSQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.8 ReleaseSavepoint Method

Destroys the specified savepoint without affecting any work that has been
performed after its creation.

Class

TUniConnection

Syntax

procedure ReleaseSavepoint(const Name: string);
Parameters

Name
Holds the savepoint name.

Remarks

Call the ReleaseSavepoint method to destroy the specified savepoint without

Reference 563

© 2013 Enter your company name

affecting any work that has been performed after its creation.

See Also

 Savepoint
 RollbackToSavepoint

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.9 RollbackRetaining Method

Used to roll back all changes of data associated with the transaction and retain the
transaction context.

Class

TUniConnection

Syntax

procedure RollbackRetaining;

Remarks

Use the RollbackRetaining method to roll back all changes of data associated with
the transaction and retain the transaction context.
Note: this method is only supported for the InterBase provider.

See Also

 TCustomDAConnection.Rollback
 TCustomDAConnection.StartTransaction

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.10 RollbackToSavepoint Method

Cancels all updates for the current transaction.

Class

TUniConnection

Syntax

procedure RollbackToSavepoint(const Name: string);
Parameters

Name
Holds the savepoint name.

Remarks

Call the RollbackToSavepoint method to cancel all updates for the current
transaction and restore its state up to the moment of the last defined savepoint.

Universal Data Access Components564

© 2013 Enter your company name

See Also

 ReleaseSavepoint
 Savepoint
 TCustomDAConnection.Rollback

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.11 Savepoint Method

Defines a point in the transaction to which you can later roll back.

Class

TUniConnection

Syntax

procedure Savepoint(const Name: string);
Parameters

Name
Holds a valid name for identifying a savepoint.

Remarks

Call the Savepoint method to define a point in the transaction to which you can
later roll back. As the parameter, you can pass any valid name to identify the
savepoint.
To roll back to the last savepoint, call RollbackToSavepoint.

See Also

 ReleaseSavepoint
 RollbackToSavepoint

© 1997-2013 Devart. All Rights Reserved.

16.19.1.3.3.12 StartTransaction Method

Starts a new transaction at the server.

Class

TUniConnection

Overload List

Name Description

StartTransaction Call the StartTransaction method to
begin a new transaction at the server.

Reference 565

© 2013 Enter your company name

StartTransaction(IsolationLevel:
TCRIsolationLevel; ReadOnly: boolean)

Starts a new transaction at the server,
and specifies whether the transaction is
read-only and how database
modifications should be handled.

© 1997-2013 Devart. All Rights Reserved.

Call the StartTransaction method to begin a new transaction at the server.

Class

TUniConnection

Syntax

procedure StartTransaction; overload; override

Remarks

Call the StartTransaction method to begin a new transaction at the server. Before
calling StartTransaction, an application should check the value of the
TCustomDAConnection.InTransaction property. If the result is True, it means that a
transaction is already in progress, a subsequent call to StartTransaction without
first calling TCustomDAConnection.Commit or TCustomDAConnection.Rollback to
end the current transaction raises EDatabaseError. Calling StartTransaction when
connection is closed also raises EDatabaseError.
Updates, insertions, and deletions that take place after a call to StartTransaction
are held by the server until an application calls Commit to save the changes or
Rollback to cancel them.
Use the IsolationLevel property to specify how transactions containing database
modifications are handled.
Values of the TCRIsolationLevel enumeration correspond to the following isolation
levels of supported database servers:

SQL
standard

Oracle
SQL
Server

MySQL
InterBase
/Firebird

ilReadComm
itted

ReadCommit
ted

ilReadComm
itted

ilReadComm
itted

ilReadComm
itted

iblReadCom
mitted

ilReadUnCo
mmitted

ReadUnCom
mitted

- ilReadUnCo
mmitted

ilReadUnCo
mmitted

-

ilRepeatable
Read

RepeatableR
ead

- ilRepeatable
Read

ilRepeatable
Read

-

ilIsolated Serializable - ilIsolated ilSerializable iblTableStabi
lity

ilSnapshot Serializable
without
locks

ilSerializable ilSnapshot - iblSnapshot

ilCustom This value is introduced for future needs. Currently not
implemented.

The ReadOnly parameter determines that a read-only transaction will be started. It
means that data within the transaction can not be modified. You will get an
exception on attempt to post any changes.
The ReadOnly parameter has sense only for Oracle and InterBase providers.

Universal Data Access Components566

© 2013 Enter your company name

See Also

 TCustomDAConnection.Commit
 TCustomDAConnection.Rollback
 TCustomDAConnection.InTransaction
 StartTransaction

© 1997-2013 Devart. All Rights Reserved.

Starts a new transaction at the server, and specifies whether the transaction is
read-only and how database modifications should be handled.

Class

TUniConnection

Syntax

procedure StartTransaction(IsolationLevel: TCRIsolationLevel;
ReadOnly: boolean = False); reintroduce; overload
Parameters

IsolationLevel
Specifies how transactions containing database modifications are handled.

ReadOnly
if True, a read-only transaction will be started.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.4 TUniDataSource Class

TUniDataSource provides an interface between a UniDAC dataset components and
data-aware controls on a form.
For a list of all members of this type, see TUniDataSource members.

Unit

Uni

Syntax

TUniDataSource = class(TCRDataSource);

Remarks

TUniDataSource provides an interface between a UniDAC dataset components and
data-aware controls on a form.
TUniDataSource inherits its functionality directly from the TDataSource component.
At design-time assign individual data-aware components' DataSource properties
from their drop-down listboxes.
If you place onto a form a TUniDataSource component close to a dataset, this
dataset will be linked to it automatically.

Inheritance Hierarchy

Reference 567

© 2013 Enter your company name

TCRDataSource
 TUniDataSource

© 1997-2013 Devart. All Rights Reserved.

16.19.1.4.1 Members

TUniDataSource class overview.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.5 TUniEncryptor Class

The class that performs encrypting and decrypting of data.
For a list of all members of this type, see TUniEncryptor members.

Unit

Uni

Syntax

TUniEncryptor = class(TCREncryptor);

Inheritance Hierarchy

TCREncryptor
 TUniEncryptor

© 1997-2013 Devart. All Rights Reserved.

16.19.1.5.1 Members

TUniEncryptor class overview.

Properties

Name Description

DataHeader (inherited from TCREncryptor) Specifies whether the
additional information is
stored with the encrypted
data.

EncryptionAlgorithm (inherited from
TCREncryptor)

Specifies the algorithm of
data encryption.

HashAlgorithm (inherited from TCREncryptor) Specifies the algorithm of
generating hash data.

InvalidHashAction (inherited from TCREncryptor) Specifies the action to
perform on data fetching
when hash data is invalid.

Password (inherited from TCREncryptor) Used to set a password that
is used to generate a key for
encryption.

Methods

Name Description

Universal Data Access Components568

© 2013 Enter your company name

SetKey (inherited from TCREncryptor) Sets a key, using which data
is encrypted.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.6 TUniMacro Class

Holds the Name, Value, and Condition for a macro.
For a list of all members of this type, see TUniMacro members.

Unit

Uni

Syntax

TUniMacro = class(TCollectionItem);

Remarks

A TUniMacro object holds the Name, Value, and Condition for a macro. This macro
can be used in Unified SQL statements.
For detailed information on using macros refer to article Unified SQL .

© 1997-2013 Devart. All Rights Reserved.

16.19.1.6.1 Members

TUniMacro class overview.

Properties

Name Description

Condition Holds a condition for the
macro, which determines
whether macro is evaluated
to its Value or an empty
string.

Name Used to refer to this macro
in Unified SQL statements
and other macros.

Value Holds a string expression
that macro evaluates to if
Condition is enabled.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.6.2 Properties

Properties of the TUniMacro class.
For a complete list of the TUniMacro class members, see the TUniMacro Members
topic.

Published

Name Description

Reference 569

© 2013 Enter your company name

Condition Holds a condition for the
macro, which determines
whether macro is evaluated
to its Value or an empty
string.

Name Used to refer to this macro
in Unified SQL statements
and other macros.

Value Holds a string expression
that macro evaluates to if
Condition is enabled.

See Also
 TUniMacro Class
 TUniMacro Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.6.2.1 Condition Property

Holds a condition for the macro, which determines whether macro is evaluated to its
Value or an empty string.

Class

TUniMacro

Syntax

property Condition: string;

Remarks

The Condition property holds a condition for the macro, which determines whether
macro is evaluated to its Value or an empty string.
Macro condition is name of another custom TUniMacro or predefined macro like
MySQL, Oracle, etc. If the condition macro is defined, the current macro evaluates
to what is specified in the Value property, otherwise it returns empty string.
If the condition is not specified (represents empty string), then macro always
evaluates to Value.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.6.2.2 Name Property

Used to refer to this macro in Unified SQL statements and other macros.

Class

TUniMacro

Syntax

property Name: string;

Remarks

Universal Data Access Components570

© 2013 Enter your company name

Macro identifier to be used in Unified SQL statements.
The Name property is used to refer to this macro in Unified SQL statements and
other macros. If there are several macros with same name in Macros of
TUniConnection, the one that has valid condition is used.
When the macro is used in statements or as part of value of another macro, you
should enclose the Name in braces {...}. When used as condition for another macro,
the braces are not required.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.6.2.3 Value Property

Holds a string expression that macro evaluates to if Condition is enabled.

Class

TUniMacro

Syntax

property Value: string;

Remarks

The Value property holds a string expression that macro evaluates to if Condition is
enabled.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.7 TUniMacros Class

Used to manage a list of TUniMacro objects for a TUniConnection component.
For a list of all members of this type, see TUniMacros members.

Unit

Uni

Syntax

TUniMacros = class(TOwnedCollection);

Remarks

Use TUniMacros to manage a list of TUniMacro objects for a TUniConnection
component.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.7.1 Members

TUniMacros class overview.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.8 TUniMetaData Class

A component for obtaining metainformation about database objects from the server.
For a list of all members of this type, see TUniMetaData members.

Reference 571

© 2013 Enter your company name

Unit

Uni

Syntax

TUniMetaData = class(TDAMetaData);

Remarks

The TUniMetaData component is used to obtain metainformation from the server
about objects in the database, such as tables, table columns, stored procedures,
etc.

Inheritance Hierarchy

TMemDataSet
 TDAMetaData
 TUniMetaData

See Also

 TCustomDADataSet.Debug
 TCustomDASQL.Debug
 DBMonitor

© 1997-2013 Devart. All Rights Reserved.

16.19.1.8.1 Members

TUniMetaData class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Connection Used to specify the
connection which will be
used by TUniMetaData to
request metadata from
server.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

Universal Data Access Components572

© 2013 Enter your company name

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

MetaDataKind (inherited from TDAMetaData) Used to specify which kind
of metainformation to show.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

Restrictions (inherited from TDAMetaData) Used to provide one or more
conditions restricting the list
of objects to be described.

Transaction Used to set or return the
transaction to be used by
the component.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetMetaDataKinds (inherited from TDAMetaData
)

Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions (inherited from TDAMetaData) Used to find out which
restrictions are applicable to
a certain MetaDataKind.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Reference 573

© 2013 Enter your company name

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.8.2 Properties

Properties of the TUniMetaData class.
For a complete list of the TUniMetaData class members, see the TUniMetaData
Members topic.

Public

Universal Data Access Components574

© 2013 Enter your company name

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetMetaDataKinds (inherited from TDAMetaData
)

Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions (inherited from TDAMetaData) Used to find out which
restrictions are applicable to
a certain MetaDataKind.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

MetaDataKind (inherited from TDAMetaData) Used to specify which kind
of metainformation to show.

Reference 575

© 2013 Enter your company name

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Restrictions (inherited from TDAMetaData) Used to provide one or more
conditions restricting the list
of objects to be described.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Published

Name Description

Universal Data Access Components576

© 2013 Enter your company name

Connection Used to specify the
connection which will be
used by TUniMetaData to
request metadata from
server.

Transaction Used to set or return the
transaction to be used by
the component.

See Also
 TUniMetaData Class
 TUniMetaData Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.8.2.1 Connection Property

Used to specify the connection which will be used by TUniMetaData to request
metadata from server.

Class

TUniMetaData

Syntax

property Connection: TUniConnection;

Remarks

Use the Connection property to specify the connection which will be used by
TUniMetaData to request metadata from server. If Connection is not connected,
TUniMetaData will try to establish connection using the Connect method of the
associated TUniConnection object as soon as it will be necessary.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.8.2.2 Transaction Property

Used to set or return the transaction to be used by the component.

Class

TUniMetaData

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to set or return the transaction to be used by the
component.

© 1997-2013 Devart. All Rights Reserved.

Reference 577

© 2013 Enter your company name

16.19.1.9 TUniParam Class

A class that is used to set the values of individual parameters passed with queries
or stored procedures.
For a list of all members of this type, see TUniParam members.

Unit

Uni

Syntax

TUniParam = class(TDAParam);

Remarks

Use the properties of TUniParam to set the value of a parameter. Objects that use
parameters create TUniParam objects to represent these parameters. For example,
TUniParam objects are used by TUniSQL, TCustomUniDataSet.
TUniParam shares many properties with TField, as both describe the value of a field
in a dataset. However, a TField object has several properties to describe the field
binding, and how the field is displayed, edited, or calculated that are not needed in
a TUniParam object. Conversely, TUniParam includes properties that indicate how
the field value is passed as a parameter.

Inheritance Hierarchy

TDAParam
 TUniParam

See Also

 TCustomUniDataSet
 TUniSQL
 TUniParams

© 1997-2013 Devart. All Rights Reserved.

16.19.1.9.1 Members

TUniParam class overview.

Properties

Name Description

AsBlob (inherited from TDAParam) Used to set and read the
value of the BLOB parameter
as string.

AsBlobRef (inherited from TDAParam) Used to set and read the
value of the BLOB parameter
as a TBlob object.

AsFloat (inherited from TDAParam) Used to assign the value for
a float field to a parameter.

Universal Data Access Components578

© 2013 Enter your company name

AsInteger (inherited from TDAParam) Used to assign the value for
an integer field to the
parameter.

AsLargeInt (inherited from TDAParam) Used to assign the value for
a LargeInteger field to the
parameter.

AsMemo (inherited from TDAParam) Used to assign the value for
a memo field to the
parameter.

AsMemoRef (inherited from TDAParam) Used to set and read the
value of the memo
parameter as a TBlob object.

AsSQLTimeStamp (inherited from TDAParam) Used to specify the value of
the parameter when it
represents a SQL timestamp
field.

AsString (inherited from TDAParam) Used to assign the string
value to the parameter.

AsWideString (inherited from TDAParam) Used to assign the Unicode
string value to the
parameter.

DataType (inherited from TDAParam) Indicates the data type of
the parameter.

IsNull (inherited from TDAParam) Used to indicate whether the
value assigned to a
parameter is NULL.

ParamType (inherited from TDAParam) Used to indicate the type of
use for a parameter.

Size (inherited from TDAParam) Specifies the size of a string
type parameter.

Value (inherited from TDAParam) Used to represent the value
of the parameter as Variant.

Methods

Name Description

AssignField (inherited from TDAParam) Assigns field name and field
value to a param.

AssignFieldValue (inherited from TDAParam) Assigns the specified field
properties and value to a
parameter.

LoadFromFile (inherited from TDAParam) Places the content of a
specified file into a
TDAParam object.

LoadFromStream (inherited from TDAParam) Places the content from a
stream into a TDAParam
object.

SetBlobData (inherited from TDAParam) Overloaded. Writes the data
from a specified buffer to
BLOB.

Reference 579

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.19.1.10TUniParams Class

Used to control TUniParam objects.
For a list of all members of this type, see TUniParams members.

Unit

Uni

Syntax

TUniParams = class(TDAParams);

Remarks

Use TUniParams to manage a list of TUniParam objects for an object that uses field
parameters. For example, TUniStoredProc objects and TUniQuery objects use
TUniParams objects to create and access their parameters.

Inheritance Hierarchy

TDAParams
 TUniParams

See Also

 TUniParam
 TCustomDASQL.Params
 TCustomDADataSet.Params
 TCustomDADataSet.Params
 TCustomDASQL.Params
 TUniParam

© 1997-2013 Devart. All Rights Reserved.

16.19.1.10.1 Members

TUniParams class overview.

Properties

Name Description

Items (inherited from TDAParams) Used to interate through all
parameters.

Methods

Name Description

FindParam (inherited from TDAParams) Searches for a parameter
with the specified name.

ParamByName (inherited from TDAParams) Searches for a parameter
with the specified name.

Universal Data Access Components580

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.19.1.11TUniQuery Class

A component for executing queries and operating record sets. It also provides
flexible way to update data.
For a list of all members of this type, see TUniQuery members.

Unit

Uni

Syntax

TUniQuery = class(TCustomUniDataSet);

Remarks

TUniQuery is a direct descendant of the TCustomUniDataSet component. It
publishes most of its inherited properties and events so that they can be
manipulated at design-time.
Use TUniQuery to perform fetching, insertion, deletion and update of record by
dynamically generated SQL statements. TUniQuery provides automatic blocking of
records, their checking before edit and refreshing after post. Set SQL, SQLInsert,
SQLDelete, SQLRefresh, and SQLUpdate properties to define SQL statements for
subsequent accesses to the database server. There is no restriction to their syntax,
so any SQL statement is allowed. Usually you need to use INSERT, DELETE, and
UPDATE statements but you also may use stored procedures in more diverse cases.
To modify records, you can specify KeyFields. If they are not specified, TUniQuery
will retrieve primary keys for UpdatingTable from metadata. TUniQuery can
automatically update only one table. Updating table is defined by the UpdatingTable
property if this property is set. Otherwise, the table a field of which is the first field
in the field list in the SELECT clause is used as an updating table.
The SQLInsert, SQLDelete, SQLUpdate, SQLRefresh properties support automatic
binding of parameters which have identical names to fields captions. To retrieve the
value of a field as it was before the operation use the field name with the 'OLD_'
prefix. This is especially useful when doing field comparisons in the WHERE clause
of the statement. Use the TCustomDADataSet.BeforeUpdateExecute event to assign
the value to additional parameters and the TCustomDADataSet.AfterUpdateExecute
event to read them.

Inheritance Hierarchy

TMemDataSet
 TCustomDADataSet
 TCustomUniDataSet
 TUniQuery

See Also

 Master/Detail Relationships
 TUniStoredProc
 TUniTable

Reference 581

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.19.1.11.1 Members

TUniQuery class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

Universal Data Access Components582

© 2013 Enter your company name

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

LockMode Used to specify what kind of
lock will be performed when
editing a record.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

Reference 583

© 2013 Enter your company name

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Universal Data Access Components584

© 2013 Enter your company name

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

UpdatingTable Used to specify which table
in a query is assumed to be
the target for subsequent
data-modification queries as
a result of user incentive to
insert, update or delete
records.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Reference 585

© 2013 Enter your company name

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

Universal Data Access Components586

© 2013 Enter your company name

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

Reference 587

© 2013 Enter your company name

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

Universal Data Access Components588

© 2013 Enter your company name

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.11.2 Properties

Properties of the TUniQuery class.
For a complete list of the TUniQuery class members, see the TUniQuery Members
topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Reference 589

© 2013 Enter your company name

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

Universal Data Access Components590

© 2013 Enter your company name

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

Reference 591

© 2013 Enter your company name

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

Universal Data Access Components592

© 2013 Enter your company name

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

Reference 593

© 2013 Enter your company name

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Universal Data Access Components594

© 2013 Enter your company name

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Published

Name Description

LockMode Used to specify what kind of
lock will be performed when
editing a record.

UpdatingTable Used to specify which table
in a query is assumed to be
the target for subsequent
data-modification queries as
a result of user incentive to
insert, update or delete
records.

Reference 595

© 2013 Enter your company name

See Also
 TUniQuery Class
 TUniQuery Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.11.2.1 LockMode Property

Used to specify what kind of lock will be performed when editing a record.

Class

TUniQuery

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when
editing a record. Locking a record is useful in creating multi-user applications. It
prevents modification of a record by several users at the same time.
Locking is performed by the RefreshRecord method.
The default value is lmNone.

See Also

 TUniStoredProc.LockMode
 TUniTable.LockMode

© 1997-2013 Devart. All Rights Reserved.

16.19.1.11.2.2 UpdatingTable Property

Used to specify which table in a query is assumed to be the target for subsequent
data-modification queries as a result of user incentive to insert, update or delete
records.

Class

TUniQuery

Syntax

property UpdatingTable: string;

Remarks

Use the UpdatingTable property to specify which table in a query is assumed to be
the target for the subsequent data-modification queries as a result of user incentive
to insert, update or delete records.
This property is used on Insert, Update, Delete or RefreshRecord (see also
TCustomUniDataSet.Options) if appropriate SQL (SQLInsert, SQLUpdate or
SQLDelete) is not provided.
If UpdatingTable is not set then the first table used in a query is assumed to be the

Universal Data Access Components596

© 2013 Enter your company name

target.

Example

For example:
1.For the query where the only allowed value for UpdatingTable property is

'Orders';
2.For the query where allowed values for UpdatingTable are 'Orders' and 'Order

Details'.

In the first case (or on default) editable field is ShipName, in the second � Quantity
field.
Example 1.
 SELECT OrderID, ShipName FROM Orders;
Example 2.
 SELECT A.OrderID, A.ShipName, B.Quantity FROM Orders A,
 [Order Details] B WHERE (A.OrderID=B.OrderID);

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12TUniSQL Class

A component for executing SQL statements and calling stored procedures on the
database server.
For a list of all members of this type, see TUniSQL members.

Unit

Uni

Syntax

TUniSQL = class(TCustomDASQL);

Remarks

The TUniSQL component is a direct descendant of the TCustomDASQL class.
Use The TUniSQL component when a client application must execute SQL statement
or the PL/SQL block, and call stored procedure on the database server. The SQL
statement should not retrieve rows from the database.

Inheritance Hierarchy

TCustomDASQL
 TUniSQL

See Also

 TUniQuery
 TUniScript

© 1997-2013 Devart. All Rights Reserved.

Reference 597

© 2013 Enter your company name

16.19.1.12.1 Members

TUniSQL class overview.

Properties

Name Description

ChangeCursor (inherited from TCustomDASQL) Enables or disables changing
screen cursor when
executing commands in the
NonBlocking mode.

Connection Used to specify the
connection in which the
script will be executed.

Debug (inherited from TCustomDASQL) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

FinalSQL (inherited from TCustomDASQL) Used to return a SQL
statement with expanded
macros.

LastInsertId Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

MacroCount (inherited from TCustomDASQL) Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDASQL) Makes it possible to change
SQL queries easily.

ParamCheck (inherited from TCustomDASQL) Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL) Indicates the number of
parameters in the Params
property.

Params (inherited from TCustomDASQL) Used to contain parameters
for a SQL statement.

ParamValues (inherited from TCustomDASQL) Used to get or set the values
of individual field
parameters that are
identified by name.

Prepared (inherited from TCustomDASQL) Used to indicate whether a
query is prepared for
execution.

Universal Data Access Components598

© 2013 Enter your company name

RowsAffected (inherited from TCustomDASQL) Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions Provides extended settings
for each data provider.

SQL (inherited from TCustomDASQL) Used to provide a SQL
statement that a
TCustomDASQL component
executes when the Execute
method is called.

Transaction Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

Methods

Name Description

BreakExec Breaks execution of a SQL
satatement on the server.

CreateProcCall Assigns a command that
calls stored procedure
specified by Name to the
SQL property.

Execute (inherited from TCustomDASQL) Overloaded. Executes SQL
commands.

Executing (inherited from TCustomDASQL) Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro (inherited from TCustomDASQL) Searches for a macro with
the specified name.

FindParam Searches for a parameter
with the specified name.

MacroByName (inherited from TCustomDASQL) Finds a Macro with the name
passed in Name.

ParamByName Searches for a parameter
with the specified name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and parses
cursor for a query.

UnPrepare (inherited from TCustomDASQL) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

Events

Reference 599

© 2013 Enter your company name

Name Description

AfterExecute (inherited from TCustomDASQL) Occurs after a SQL
statement has been
executed.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.2 Properties

Properties of the TUniSQL class.
For a complete list of the TUniSQL class members, see the TUniSQL Members topic.

Public

Name Description

AfterExecute (inherited from TCustomDASQL) Occurs after a SQL
statement has been
executed.

ChangeCursor (inherited from TCustomDASQL) Enables or disables changing
screen cursor when
executing commands in the
NonBlocking mode.

Debug (inherited from TCustomDASQL) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

Execute (inherited from TCustomDASQL) Overloaded. Executes SQL
commands.

Executing (inherited from TCustomDASQL) Checks whether
TCustomDASQL still
executes a SQL statement.

FinalSQL (inherited from TCustomDASQL) Used to return a SQL
statement with expanded
macros.

FindMacro (inherited from TCustomDASQL) Searches for a macro with
the specified name.

FindParam (inherited from TCustomDASQL) Finds a parameter with the
specified name.

LastInsertId Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

MacroByName (inherited from TCustomDASQL) Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDASQL) Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDASQL) Makes it possible to change
SQL queries easily.

Universal Data Access Components600

© 2013 Enter your company name

ParamByName (inherited from TCustomDASQL) Finds a parameter with the
specified name.

ParamCheck (inherited from TCustomDASQL) Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL) Indicates the number of
parameters in the Params
property.

Params (inherited from TCustomDASQL) Used to contain parameters
for a SQL statement.

ParamValues (inherited from TCustomDASQL) Used to get or set the values
of individual field
parameters that are
identified by name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TCustomDASQL) Used to indicate whether a
query is prepared for
execution.

RowsAffected (inherited from TCustomDASQL) Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL (inherited from TCustomDASQL) Used to provide a SQL
statement that a
TCustomDASQL component
executes when the Execute
method is called.

UnPrepare (inherited from TCustomDASQL) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

Published

Name Description

Connection Used to specify the
connection in which the
script will be executed.

SpecificOptions Provides extended settings
for each data provider.

Reference 601

© 2013 Enter your company name

Transaction Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

See Also
 TUniSQL Class
 TUniSQL Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class

TUniSQL

Syntax

property Connection: TUniConnection;

Remarks

Use the Connection property to specify the connection in which the script will be
executed. If Connection is not connected, the TCustomDASQL.Execute method calls
the Connect method of Connection.

See Also

 TUniConnection

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.2.2 LastInsertId Property

Can be used with MySQL and PostgreSQL servers to get the value of the ID field
after executing INSERT statement.

Class

TUniSQL

Syntax

property LastInsertId: int64;

Remarks

The LastInsertId property can be used with MySQL and PostgreSQL servers to get
the value of the ID field after executing INSERT statement.
For MySQL LastInsertId returns the ID generated for an AUTO_INCREMENT column
by the previous query. Use this property after you have performed an INSERT query

Universal Data Access Components602

© 2013 Enter your company name

into a table that contains an AUTO_INCREMENT field.
For PostgreSQL LastInsertId returns the OID value generated for an OID column in
a table with OIDs by the previous query.
If the query does not perform insertion into a table that contains field of the types
specified above, the value of LastInsertId won't be defined.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.2.3 SpecificOptions Property

Provides extended settings for each data provider.

Class

TUniSQL

Syntax

property SpecificOptions: TSpecificOptionsList;

Remarks

Use the SpecificOptions property to provide extended settings for each data
provider. SpecificOptions can be setup both design time and run time.
At design time call the component editor by double click on it, and select the
Options tab in the editor. Calling the SpecificOptions editor from the Object
Inspector will open the component editor with Options tab active. Type or select the
provider name, and change values of required properties. Then you can either close
the editor, or select another provider name. Settings for all providers will be saved.
SpecificOptions can be setup at the same time for all providers that supposed to be
used.
All options are applied right before executing. If an option name is not recognized,
an exception is raised and commands are not executed.

Example

You can also setup specific options at run time. Either of two formats can be used:
1.Using the provider name in an option name;
2.Not using the provider name in an option name.

In the second case options will be applied to the current provider, namely to the
provider specified in the TUniConnection.ProviderName property of assigned
connection.
When you set the AutoDDL option like it is shown in the second example, you can
execute the script with the InterBase provider, but attempt to execute it with other
providers will fail.
Example 1.
 UniSQL1.SpecificOptions.Add('InterBase.AutoDDL=True')
Example 2.
 UniSQL1.SpecificOptions.Add('AutoDDL=True')

See Also


TUniConnection.ProviderName

Reference 603

© 2013 Enter your company name

 UniDAC and Oracle
 UniDAC and SQL Server
 UniDAC and MySQL
 UniDAC and InterBase/Firebird
 UniDAC and PostgreSQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.2.4 Transaction Property

Used to specify the TUniTransaction object in the context of which SQL commands
will be executed, and queries retrieving data will be opened.

Class

TUniSQL

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to specify the TUniTransaction object in the context of
which SQL commands will be executed, and queries retrieving data will be opened.
If this property is not specified, the default transaction associated with linked
TUniConnection will be used. This transaction will work in AutoCommit mode.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.3 Methods

Methods of the TUniSQL class.
For a complete list of the TUniSQL class members, see the TUniSQL Members topic.

Public

Name Description

AfterExecute (inherited from TCustomDASQL) Occurs after a SQL
statement has been
executed.

BreakExec Breaks execution of a SQL
satatement on the server.

ChangeCursor (inherited from TCustomDASQL) Enables or disables changing
screen cursor when
executing commands in the
NonBlocking mode.

Connection (inherited from TCustomDASQL) Used to specify a connection
object to use to connect to a
data store.

CreateProcCall Assigns a command that
calls stored procedure
specified by Name to the
SQL property.

Universal Data Access Components604

© 2013 Enter your company name

Debug (inherited from TCustomDASQL) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

Execute (inherited from TCustomDASQL) Overloaded. Executes SQL
commands.

Executing (inherited from TCustomDASQL) Checks whether
TCustomDASQL still
executes a SQL statement.

FinalSQL (inherited from TCustomDASQL) Used to return a SQL
statement with expanded
macros.

FindMacro (inherited from TCustomDASQL) Searches for a macro with
the specified name.

FindParam Searches for a parameter
with the specified name.

MacroByName (inherited from TCustomDASQL) Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDASQL) Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDASQL) Makes it possible to change
SQL queries easily.

ParamByName Searches for a parameter
with the specified name.

ParamCheck (inherited from TCustomDASQL) Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL) Indicates the number of
parameters in the Params
property.

Params (inherited from TCustomDASQL) Used to contain parameters
for a SQL statement.

ParamValues (inherited from TCustomDASQL) Used to get or set the values
of individual field
parameters that are
identified by name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TCustomDASQL) Used to indicate whether a
query is prepared for
execution.

RowsAffected (inherited from TCustomDASQL) Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

Reference 605

© 2013 Enter your company name

SQL (inherited from TCustomDASQL) Used to provide a SQL
statement that a
TCustomDASQL component
executes when the Execute
method is called.

UnPrepare (inherited from TCustomDASQL) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

See Also
 TUniSQL Class
 TUniSQL Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.3.1 BreakExec Method

Breaks execution of a SQL satatement on the server.

Class

TUniSQL

Syntax

procedure BreakExec;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server.
It makes sense to call BreakExec only from another thread. Useful when
NonBlocking is True.

See Also

 TCustomDASQL.Execute

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.3.2 CreateProcCall Method

Assigns a command that calls stored procedure specified by Name to the SQL
property.

Class

TUniSQL

Syntax

procedure CreateProcCall(const Name: string);
Parameters

Universal Data Access Components606

© 2013 Enter your company name

Name
Holds the stoped procedure name.

Remarks

Call the CreateProcCall method to assign a command that calls stored procedure
specified by Name to the SQL property. This procedure also retrieves information
about parameters of the procedure from server. After calling CreateProcCall you can
assign parameter values of the stored procedure using, for example,
TCustomDASQL.Params or ParamByName, and then execute it with the
TCustomDASQL.Execute method.

See Also

 TCustomDASQL.Execute
 TUniStoredProc

© 1997-2013 Devart. All Rights Reserved.

16.19.1.12.3.3 FindParam Method

Searches for a parameter with the specified name.

Class

TUniSQL

Syntax

function FindParam(const Value: string): TUniParam;
Parameters

Value
Holds the name of the parameter to search.

Return Value

a parameter, if a match is found. Nil otherwise.

Remarks

Call the FindParam method to find a parameter with the name passed in Name
argument. If a match is found, FindParam returns the parameter. Otherwise, it
returns nil.

See Also

 TUniParam
 ParamByName

© 1997-2013 Devart. All Rights Reserved.

Reference 607

© 2013 Enter your company name

16.19.1.12.3.4 ParamByName Method

Searches for a parameter with the specified name.

Class

TUniSQL

Syntax

function ParamByName(const Value: string): TUniParam;
Parameters

Value
Holds the name of the parameter to search.

Return Value

a parameter, if a match is found. Nil otherwise.

Remarks

Call the ParamByName method to find a parameter with the name passed as Name.
If a match is found, ParamByName returns the parameter. Otherwise, it raises an
exception.

Example
UniSQL1.Execute;
Edit1.Text := UniSQL1.ParamByName('Contact').AsString;

See Also


TUniParam
 FindParam

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13TUniStoredProc Class

A component for accessing and executing stored procedures and functions.
For a list of all members of this type, see TUniStoredProc members.

Unit

Uni

Syntax

TUniStoredProc = class(TCustomUniDataSet);

Remarks

Use TUniStoredProc to access stored procedures on the database server.
You need only to define the StoredProcName property, and the SQL statement to
call the stored procedure will be generated automatically.

Universal Data Access Components608

© 2013 Enter your company name

Use the Execute method at runtime to generate request that instructs server to
execute procedure and PrepareSQL to describe parameters at run time

Inheritance Hierarchy

TMemDataSet
 TCustomDADataSet
 TCustomUniDataSet
 TUniStoredProc

See Also

 TUniQuery
 TUniSQL

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.1 Members

TUniStoredProc class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Reference 609

© 2013 Enter your company name

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

LockMode Used to specify what kind of
lock will be performed when
editing a record.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

Universal Data Access Components610

© 2013 Enter your company name

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

Reference 611

© 2013 Enter your company name

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

StoredProcName Used to specify the name of
the stored procedure to call
on the server.

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

Universal Data Access Components612

© 2013 Enter your company name

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

ExecProc Executes a SQL statement
on the server.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

Reference 613

© 2013 Enter your company name

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Universal Data Access Components614

© 2013 Enter your company name

PrepareSQL Describes the stored
procedure parameters.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

Reference 615

© 2013 Enter your company name

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.2 Properties

Properties of the TUniStoredProc class.
For a complete list of the TUniStoredProc class members, see the TUniStoredProc
Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

Universal Data Access Components616

© 2013 Enter your company name

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Reference 617

© 2013 Enter your company name

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

Universal Data Access Components618

© 2013 Enter your company name

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

Reference 619

© 2013 Enter your company name

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

Universal Data Access Components620

© 2013 Enter your company name

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

Reference 621

© 2013 Enter your company name

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Universal Data Access Components622

© 2013 Enter your company name

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Published

Name Description

LockMode Used to specify what kind of
lock will be performed when
editing a record.

StoredProcName Used to specify the name of
the stored procedure to call
on the server.

See Also
 TUniStoredProc Class
 TUniStoredProc Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.2.1 LockMode Property

Used to specify what kind of lock will be performed when editing a record.

Class

TUniStoredProc

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when
editing a record. Locking a record is useful in creating multi-user applications. It
prevents modification of a record by several users at the same time.
Locking is performed by the RefreshRecord method.
The default value is lmNone.

See Also

 TUniQuery.LockMode
 TUniTable.LockMode

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.2.2 StoredProcName Property

Used to specify the name of the stored procedure to call on the server.

Class

TUniStoredProc

Reference 623

© 2013 Enter your company name

Syntax

property StoredProcName: string;

Remarks

Use the StoredProcName property to specify the name of the stored procedure to
call on the server. If StoredProcName does not match the name of an existing
stored procedure on the server, then when the application attempts to prepare the
procedure prior to execution, an exception is raised.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.3 Methods

Methods of the TUniStoredProc class.
For a complete list of the TUniStoredProc class members, see the TUniStoredProc
Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Universal Data Access Components624

© 2013 Enter your company name

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

ExecProc Executes a SQL statement
on the server.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Reference 625

© 2013 Enter your company name

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

Universal Data Access Components626

© 2013 Enter your company name

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

Reference 627

© 2013 Enter your company name

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

PrepareSQL Describes the stored
procedure parameters.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

Universal Data Access Components628

© 2013 Enter your company name

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

Reference 629

© 2013 Enter your company name

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Universal Data Access Components630

© 2013 Enter your company name

See Also
 TUniStoredProc Class
 TUniStoredProc Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.3.1 ExecProc Method

Executes a SQL statement on the server.

Class

TUniStoredProc

Syntax

procedure ExecProc;

Remarks

The ExecProc method is equal to the TCustomDADataSet.Execute method. It is
included for compatibility with the TStoredProc component.

See Also

 TCustomDADataSet.Execute

© 1997-2013 Devart. All Rights Reserved.

16.19.1.13.3.2 PrepareSQL Method

Describes the stored procedure parameters.

Class

TUniStoredProc

Syntax

procedure PrepareSQL(IsQuery: boolean = False);
Parameters

IsQuery
If True, the SELECT statement is generated.

Remarks

Call the PrepareSQL method to describe parameters of stored procedure. The
Execute method calls it automatically if it is necessary. You can define parameters
at design time if ParameterEditor is open. Set the IsQuery parameter to True to
prepare SELECT statement. Set it to False or omit it to prepare EXECUTE
PROCEDURE statement. This parameter has sense only for InterBase server.

© 1997-2013 Devart. All Rights Reserved.

Reference 631

© 2013 Enter your company name

16.19.1.14TUniTable Class

A component for retrieving and updating data in a single table without writing SQL
statements.
For a list of all members of this type, see TUniTable members.

Unit

Uni

Syntax

TUniTable = class(TCustomUniDataSet);

Remarks

The TUniTable component allows retrieving and updating data in a single table
without writing SQL statements. Use TUniTable to access data in a table . Use the
TableName property to specify table name. TUniTable uses the KeyFields property
to build SQL statements for updating table data. KeyFields is a string containing a
semicolon-delimited list of the field names.

Inheritance Hierarchy

TMemDataSet
 TCustomDADataSet
 TCustomUniDataSet
 TUniTable

See Also

 Master/Detail Relationships
 TCustomUniDataSet
 TUniQuery
 TUniStoredProc

© 1997-2013 Devart. All Rights Reserved.

16.19.1.14.1 Members

TUniTable class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

Universal Data Access Components632

© 2013 Enter your company name

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

Reference 633

© 2013 Enter your company name

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

LockMode Used to specify what kind of
lock will be performed when
editing a record.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

OrderFields Used to build ORDER BY
clause of SQL statements.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

Universal Data Access Components634

© 2013 Enter your company name

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

TableName Used to specify the name of
the database table this
component encapsulates.

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

Reference 635

© 2013 Enter your company name

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Universal Data Access Components636

© 2013 Enter your company name

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Reference 637

© 2013 Enter your company name

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

PrepareSQL Used to determine KeyFields
and build query for
TUniTable.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

Universal Data Access Components638

© 2013 Enter your company name

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.14.2 Properties

Properties of the TUniTable class.
For a complete list of the TUniTable class members, see the TUniTable Members
topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

Reference 639

© 2013 Enter your company name

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

Universal Data Access Components640

© 2013 Enter your company name

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

Reference 641

© 2013 Enter your company name

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

Universal Data Access Components642

© 2013 Enter your company name

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

Reference 643

© 2013 Enter your company name

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

Universal Data Access Components644

© 2013 Enter your company name

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

Reference 645

© 2013 Enter your company name

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Published

Name Description

LockMode Used to specify what kind of
lock will be performed when
editing a record.

OrderFields Used to build ORDER BY
clause of SQL statements.

TableName Used to specify the name of
the database table this
component encapsulates.

See Also
 TUniTable Class
 TUniTable Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.14.2.1 LockMode Property

Used to specify what kind of lock will be performed when editing a record.

Class

TUniTable

Syntax

property LockMode: TLockMode default lmOptimistic;

Remarks

Use the LockMode property to define what kind of lock will be performed when
editing a record. Locking a record is useful in creating multi-user applications. It
prevents modification of a record by several users at the same time.
Locking is performed by the RefreshRecord method.

Universal Data Access Components646

© 2013 Enter your company name

The default value is lmNone.

See Also

 TUniStoredProc.LockMode
 TUniQuery.LockMode

© 1997-2013 Devart. All Rights Reserved.

16.19.1.14.2.2 OrderFields Property

Used to build ORDER BY clause of SQL statements.

Class

TUniTable

Syntax

property OrderFields: string;

Remarks

TUniTable uses the OrderFields property to build ORDER BY clause of SQL
statements. To set several field names to this property separate them with commas.
TUniTable is reopened when OrderFields is being changed.

See Also

 TUniTable

© 1997-2013 Devart. All Rights Reserved.

16.19.1.14.2.3 TableName Property

Used to specify the name of the database table this component encapsulates.

Class

TUniTable

Syntax

property TableName: string;

Remarks

Use the TableName property to specify the name of the database table this
component encapsulates. If TCustomDADataSet.Connection is assigned at design
time,select a valid table name from the TableName drop-down list in Object
Inspector.

See Also

Reference 647

© 2013 Enter your company name

 TUniQuery

© 1997-2013 Devart. All Rights Reserved.

16.19.1.14.3 Methods

Methods of the TUniTable class.
For a complete list of the TUniTable class members, see the TUniTable Members
topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

AfterExecute (inherited from
TCustomDADataSet)

Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from
TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet
)

Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from
TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Universal Data Access Components648

© 2013 Enter your company name

Connection (inherited from TCustomDADataSet) Used to specify a connection
object to use to connect to a
data store.

CreateBlobStream (inherited from
TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from
TCustomUniDataSet)

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from
TCustomDADataSet)

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from
TCustomDADataSet)

Used to keep dataset opened
after connection is closed.

DMLRefresh (inherited from TCustomUniDataSet
)

Used to refresh record by
RETURNING clause when
insert or update is
performed.

Encryption (inherited from TCustomDADataSet) Used to specify the options
of the data encryption in a
dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement
on the server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has
already fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

Reference 649

© 2013 Enter your company name

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE
clause of SELECT statement
and reopen a query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy, and
FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a
specified macro exists in a
dataset.

FindNearest (inherited from TCustomDADataSet
)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

GetDataType (inherited from
TCustomDADataSet)

Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from
TCustomDADataSet)

Returns a multireference
shared object from field.

GetFieldPrecision (inherited from
TCustomDADataSet)

Retrieves the precision of a
number field.

GetFieldScale (inherited from
TCustomDADataSet)

Retrieves the scale of a
number field.

GetOrderBy (inherited from TCustomDADataSet
)

Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet
)

Sets the current record in
this dataset similar to the
current record in another
dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

Universal Data Access Components650

© 2013 Enter your company name

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if they
were empty before updating
the database.

LastInsertId (inherited from
TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from
TCustomDADataSet)

Finds a Macro with the name
passed in Name.

MacroCount (inherited from TCustomDADataSet
)

Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet
)

Used to specify the names of
one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from
TCustomDADataSet)

Used to specify the data
source component which
binds current dataset to the
master one.

Reference 651

© 2013 Enter your company name

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

OpenNext (inherited from TCustomUniDataSet) Provides second and other
result sets while executing
multiresult query.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamByName (inherited from
TCustomUniDataSet)

Accesses parameter
information based on a
specified parameter name.

ParamCheck (inherited from TCustomDADataSet
)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet
)

Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses
cursor for a query.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

PrepareSQL Used to determine KeyFields
and build query for
TUniTable.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from
TCustomDADataSet)

Used to indicate when the
editing record is refreshed.

RefreshRecord (inherited from
TCustomDADataSet)

Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

Universal Data Access Components652

© 2013 Enter your company name

Resync (inherited from TCustomDADataSet) Resynchronize the dataset
with underlying physical
data when making calls that
may change the internal
cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

RowsAffected (inherited from
TCustomDADataSet)

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SpecificOptions (inherited from
TCustomUniDataSet)

Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet) Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.
RefreshRecord procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL
property value was saved to
the BaseSQL property.

Reference 653

© 2013 Enter your company name

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet
)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from
TCustomDADataSet)

Used if an application does
not need bidirectional access
to records in the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateObject (inherited from
TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

UpdateTransaction (inherited from
TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

See Also
 TUniTable Class
 TUniTable Class Members

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components654

© 2013 Enter your company name

16.19.1.14.3.1 PrepareSQL Method

Used to determine KeyFields and build query for TUniTable.

Class

TUniTable

Syntax

procedure PrepareSQL;

Remarks

Use the PrepareSQL proprty to determine KeyFields and build query for TUniTable.
PrepareSQL is called implicitly when TUniTable is opening.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15TUniTransaction Class

A component for managing transactions in an application.
For a list of all members of this type, see TUniTransaction members.

Unit

Uni

Syntax

TUniTransaction = class(TDATransaction);

Remarks

The TUniTransaction component is used to provide discrete transaction control over
connection. It can be used for manipulating simple local and global transactions.

Inheritance Hierarchy

TDATransaction
 TUniTransaction

See Also

 Transactions
 TCustomDAConnection.StartTransaction
 TCustomDAConnection.Commit
 TCustomDAConnection.Rollback

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.1 Members

TUniTransaction class overview.

Properties

Name Description

Reference 655

© 2013 Enter your company name

Active (inherited from TDATransaction) Used to determine if the
transaction is active.

Connections Used to specify a connection
for the given index.

ConnectionsCount Used to get the number of
connections associated with
the transaction component.

DefaultCloseAction (inherited from
TDATransaction)

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

IsolationLevel Used to specify how the
transactions containing
database modifications are
handled.

Methods

Name Description

AddConnection Binds a
TCustomDAConnection
object with the transaction
component.

Commit (inherited from TDATransaction) Commits the current
transaction.

RemoveConnection Disassiciates the specified
connections from the
transaction.

Rollback (inherited from TDATransaction) Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction (inherited from TDATransaction
)

Begins a new transaction.

Events

Name Description

OnError (inherited from TDATransaction) Used to process errors that
occur during executing a
transaction.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.2 Properties

Properties of the TUniTransaction class.
For a complete list of the TUniTransaction class members, see the
TUniTransaction Members topic.

Universal Data Access Components656

© 2013 Enter your company name

Public

Name Description

Active (inherited from TDATransaction) Used to determine if the
transaction is active.

Commit (inherited from TDATransaction) Commits the current
transaction.

Connections Used to specify a connection
for the given index.

ConnectionsCount Used to get the number of
connections associated with
the transaction component.

DefaultCloseAction (inherited from
TDATransaction)

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

OnError (inherited from TDATransaction) Used to process errors that
occur during executing a
transaction.

Rollback (inherited from TDATransaction) Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction (inherited from TDATransaction
)

Begins a new transaction.

Published

Name Description

IsolationLevel Used to specify how the
transactions containing
database modifications are
handled.

See Also
 TUniTransaction Class
 TUniTransaction Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.2.1 Connections Property(Indexer)

Used to specify a connection for the given index.

Class

TUniTransaction

Syntax

property Connections[Index: integer]: TUniConnection;

Reference 657

© 2013 Enter your company name

Parameters

Index
Holds the index to specify the connection for.

Remarks

Specifies a connection for the given index.

See Also

 ConnectionsCount
 RemoveConnection
 AddConnection

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.2.2 ConnectionsCount Property

Used to get the number of connections associated with the transaction component.

Class

TUniTransaction

Syntax

property ConnectionsCount: integer;

Remarks

Use the ConnectionsCount property for getting the number of connections
associated with the transaction component.

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.2.3 IsolationLevel Property

Used to specify how the transactions containing database modifications are handled.

Class

TUniTransaction

Syntax

property IsolationLevel: TCRIsolationLevel;

Remarks

Use the IsolationLevel property to specify how the transactions containing database
modifications are handled.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components658

© 2013 Enter your company name

16.19.1.15.3 Methods

Methods of the TUniTransaction class.
For a complete list of the TUniTransaction class members, see the
TUniTransaction Members topic.

Public

Name Description

Active (inherited from TDATransaction) Used to determine if the
transaction is active.

AddConnection Binds a
TCustomDAConnection
object with the transaction
component.

Commit (inherited from TDATransaction) Commits the current
transaction.

DefaultCloseAction (inherited from
TDATransaction)

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

OnError (inherited from TDATransaction) Used to process errors that
occur during executing a
transaction.

RemoveConnection Disassiciates the specified
connections from the
transaction.

Rollback (inherited from TDATransaction) Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction (inherited from TDATransaction
)

Begins a new transaction.

See Also
 TUniTransaction Class
 TUniTransaction Class Members

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.3.1 AddConnection Method

Binds a TCustomDAConnection object with the transaction component.

Class

TUniTransaction

Syntax

procedure AddConnection(Connection: TUniConnection);
Parameters

Reference 659

© 2013 Enter your company name

Connection
Holds a TCustomDAConnection object to associate with the transaction
component.

Remarks

Use the AddConnection method to associate a TCustomDAConnection object with
the transaction component.

See Also

 RemoveConnection

© 1997-2013 Devart. All Rights Reserved.

16.19.1.15.3.2 RemoveConnection Method

Disassiciates the specified connections from the transaction.

Class

TUniTransaction

Syntax

procedure RemoveConnection(Connection: TUniConnection);
Parameters

Connection
Holds the connections to disassociate.

Remarks

Call the RemoveConnection method to disassociate the specified connections from
the transaction.

See Also

 Connections
 AddConnection

© 1997-2013 Devart. All Rights Reserved.

16.19.1.16TUniUpdateSQL Class

A component for tuning update operations for the DataSet component.
For a list of all members of this type, see TUniUpdateSQL members.

Unit

Uni

Syntax

TUniUpdateSQL = class(TCustomDAUpdateSQL);

Universal Data Access Components660

© 2013 Enter your company name

Remarks

Use the TUniUpdateSQL component to provide DML statements for the dataset
components that return read-only result set. This component also allows setting
objects that can be used for executing update operations. You may prefer to use
directly SQLInsert, SQLUpdate, and SQLDelete properties of the TCustomDADataSet
descendants.

Inheritance Hierarchy

TCustomDAUpdateSQL
 TUniUpdateSQL

See Also

 TCustomUniDataSet.UpdateObject

© 1997-2013 Devart. All Rights Reserved.

16.19.1.16.1 Members

TUniUpdateSQL class overview.

Properties

Name Description

DataSet (inherited from TCustomDAUpdateSQL) Used to hold a reference to
the TCustomDADataSet
object that is being updated.

DeleteObject (inherited from
TCustomDAUpdateSQL)

Provides ability to perform
advanced adjustment of the
delete operations.

DeleteSQL (inherited from
TCustomDAUpdateSQL)

Used when deleting a
record.

InsertObject (inherited from
TCustomDAUpdateSQL)

Provides ability to perform
advanced adjustment of
insert operations.

InsertSQL (inherited from
TCustomDAUpdateSQL)

Used when inserting a
record.

LockObject (inherited from
TCustomDAUpdateSQL)

Provides ability to perform
advanced adjustment of lock
operations.

LockSQL (inherited from TCustomDAUpdateSQL
)

Used to lock the current
record.

ModifyObject (inherited from
TCustomDAUpdateSQL)

Provides ability to perform
advanced adjustment of
modify operations.

ModifySQL (inherited from
TCustomDAUpdateSQL)

Used when updating a
record.

Reference 661

© 2013 Enter your company name

RefreshObject (inherited from
TCustomDAUpdateSQL)

Provides ability to perform
advanced adjustment of
refresh operations.

RefreshSQL (inherited from
TCustomDAUpdateSQL)

Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.
RefreshRecord procedure.

SQL (inherited from TCustomDAUpdateSQL) Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Methods

Name Description

Apply (inherited from TCustomDAUpdateSQL) Sets parameters for a SQL
statement and executes it to
update a record.

ExecSQL (inherited from TCustomDAUpdateSQL
)

Executes a SQL statement.

© 1997-2013 Devart. All Rights Reserved.

16.19.2 Constants

Constants in the Uni unit.

Constants

Name Description

UniDACVersion Read this constant to get
current version number for
UniDAC.

© 1997-2013 Devart. All Rights Reserved.

16.19.2.1 UniDACVersion Constant

Read this constant to get current version number for UniDAC.

Unit

Uni

Syntax

UniDACVersion = '4.6.12';

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components662

© 2013 Enter your company name

16.20 UniAlerter

This unit contains the implementation of the TUniAlerter component.

Classes

Name Description

TUniAlerter A component for sending
and receiving database
events.

© 1997-2013 Devart. All Rights Reserved.

16.20.1 Classes

Classes in the UniAlerter unit.

Classes

Name Description

TUniAlerter A component for sending
and receiving database
events.

© 1997-2013 Devart. All Rights Reserved.

16.20.1.1 TUniAlerter Class

A component for sending and receiving database events.
For a list of all members of this type, see TUniAlerter members.

Unit

UniAlerter

Syntax

TUniAlerter = class(TDAAlerter);

Remarks

The TUniAlerter component allows you to register interest in and handle events
posted by a database server. Use TUniAlerter to handle events for responding to
actions and database changes made by other applications. To get events application
must register required events. To do it set the Events property to the required
events and call the Start method. When one of the registered events occurs the
OnEvent handler is called.
Events are transaction-based. This means that the waiting connection does not get
event until the transaction posting the event commits.
Note: not all DBMS supports event notification. Currently TUniAlerter can be used
with Oracle, PostgreSQL, and InterBase(Firebird).
TUniAlerter uses the following DBMS-specific features to send and receive events:
Oracle: DBMS_ALERT package;
PostgreSQL: NOTIFY and LISTEN commands;
InterBase: POST_EVENT command;

Reference 663

© 2013 Enter your company name

Inheritance Hierarchy

TDAAlerter
 TUniAlerter

© 1997-2013 Devart. All Rights Reserved.

16.20.1.1.1 Members

TUniAlerter class overview.

Properties

Name Description

Active (inherited from TDAAlerter) Used to determine if
TDAAlerter waits for
messages.

AutoRegister (inherited from TDAAlerter) Used to automatically
register events whenever
connection opens.

Connection Used to specify the
connection for TUniAlerter.

Methods

Name Description

SendEvent (inherited from TDAAlerter) Sends an event with Name
and content Message.

Start (inherited from TDAAlerter) Starts waiting process.

Stop (inherited from TDAAlerter) Stops waiting process.

Events

Name Description

OnError (inherited from TDAAlerter) Occurs if an exception
occurs in waiting process

© 1997-2013 Devart. All Rights Reserved.

16.20.1.1.2 Properties

Properties of the TUniAlerter class.
For a complete list of the TUniAlerter class members, see the TUniAlerter Members
topic.

Public

Name Description

Active (inherited from TDAAlerter) Used to determine if
TDAAlerter waits for
messages.

Universal Data Access Components664

© 2013 Enter your company name

AutoRegister (inherited from TDAAlerter) Used to automatically
register events whenever
connection opens.

OnError (inherited from TDAAlerter) Occurs if an exception
occurs in waiting process

SendEvent (inherited from TDAAlerter) Sends an event with Name
and content Message.

Start (inherited from TDAAlerter) Starts waiting process.

Stop (inherited from TDAAlerter) Stops waiting process.

Published

Name Description

Connection Used to specify the
connection for TUniAlerter.

See Also
 TUniAlerter Class
 TUniAlerter Class Members

© 1997-2013 Devart. All Rights Reserved.

16.20.1.1.2.1 Connection Property

Used to specify the connection for TUniAlerter.

Class

TUniAlerter

Syntax

property Connection: TUniConnection;

Remarks

Use the Connection property to specify the connection for TUniAlerter.

See Also

 TUniConnection

© 1997-2013 Devart. All Rights Reserved.

16.21 UniDacVcl

This unit contains the visual constituent of UniDAC.

Classes

Name Description

Reference 665

© 2013 Enter your company name

TUniConnectDialog A class that provides a
dialog box for user to supply
his login information.

© 1997-2013 Devart. All Rights Reserved.

16.21.1 Classes

Classes in the UniDacVcl unit.

Classes

Name Description

TUniConnectDialog A class that provides a
dialog box for user to supply
his login information.

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1 TUniConnectDialog Class

A class that provides a dialog box for user to supply his login information.
For a list of all members of this type, see TUniConnectDialog members.

Unit

UniDacVcl

Syntax

TUniConnectDialog = class(TCustomConnectDialog);

Remarks

The TUniConnectDialog component is a direct descendant of TCustomConnectDialog
class. Use TUniConnectDialog to provide dialog box for user to supply provider
name, server name, database, user name, port number, and password. You may
want to customize appearance of dialog box using this class's properties.

Inheritance Hierarchy

TCustomConnectDialog
 TUniConnectDialog

See Also

 TCustomDAConnection.ConnectDialog

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1.1 Members

TUniConnectDialog class overview.

Properties

Universal Data Access Components666

© 2013 Enter your company name

Name Description

CancelButton (inherited from
TCustomConnectDialog)

Used to specify the label for
the Cancel button.

Caption (inherited from TCustomConnectDialog
)

Used to set the caption of
dialog box.

ConnectButton (inherited from
TCustomConnectDialog)

Used to specify the label for
the Connect button.

Connection Points to the associated
TUniConnection object.

DatabaseLabel Used to specify a prompt for
database name edit.

DialogClass (inherited from
TCustomConnectDialog)

Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet (inherited from
TCustomConnectDialog)

Used to set the language of
buttons and labels captions.

PasswordLabel (inherited from
TCustomConnectDialog)

Used to specify a prompt for
password edit.

PortLabel Used to specify a prompt for
port number edit.

ProviderLabel Used to specify a prompt for
provider name.

Retries (inherited from TCustomConnectDialog) Used to indicate the number
of retries of failed
connections.

SavePassword (inherited from
TCustomConnectDialog)

Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel (inherited from
TCustomConnectDialog)

Used to specify a prompt for
the server name edit.

StoreLogInfo (inherited from
TCustomConnectDialog)

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel (inherited from
TCustomConnectDialog)

Used to specify a prompt for
username edit.

Methods

Name Description

Execute (inherited from TCustomConnectDialog
)

Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.

GetServerList (inherited from
TCustomConnectDialog)

Retrieves a list of available
server names.

Reference 667

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1.2 Properties

Properties of the TUniConnectDialog class.
For a complete list of the TUniConnectDialog class members, see the
TUniConnectDialog Members topic.

Public

Name Description

CancelButton (inherited from
TCustomConnectDialog)

Used to specify the label for
the Cancel button.

Caption (inherited from TCustomConnectDialog
)

Used to set the caption of
dialog box.

ConnectButton (inherited from
TCustomConnectDialog)

Used to specify the label for
the Connect button.

Connection Points to the associated
TUniConnection object.

DialogClass (inherited from
TCustomConnectDialog)

Used to specify the class of
the form that will be
displayed to enter login
information.

Execute (inherited from TCustomConnectDialog
)

Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.

GetServerList (inherited from
TCustomConnectDialog)

Retrieves a list of available
server names.

LabelSet (inherited from
TCustomConnectDialog)

Used to set the language of
buttons and labels captions.

PasswordLabel (inherited from
TCustomConnectDialog)

Used to specify a prompt for
password edit.

Retries (inherited from TCustomConnectDialog) Used to indicate the number
of retries of failed
connections.

SavePassword (inherited from
TCustomConnectDialog)

Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel (inherited from
TCustomConnectDialog)

Used to specify a prompt for
the server name edit.

StoreLogInfo (inherited from
TCustomConnectDialog)

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel (inherited from
TCustomConnectDialog)

Used to specify a prompt for
username edit.

Published

Universal Data Access Components668

© 2013 Enter your company name

Name Description

DatabaseLabel Used to specify a prompt for
database name edit.

PortLabel Used to specify a prompt for
port number edit.

ProviderLabel Used to specify a prompt for
provider name.

See Also
 TUniConnectDialog Class
 TUniConnectDialog Class Members

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1.2.1 Connection Property

Points to the associated TUniConnection object.

Class

TUniConnectDialog

Syntax

property Connection: TUniConnection;

Remarks

The Connection property points to the associated TUniConnection object. This
property is read only.

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1.2.2 DatabaseLabel Property

Used to specify a prompt for database name edit.

Class

TUniConnectDialog

Syntax

property DatabaseLabel: string;

Remarks

Use the DatabaseLabel property to specify a prompt for database name edit.

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1.2.3 PortLabel Property

Used to specify a prompt for port number edit.

Class

TUniConnectDialog

Reference 669

© 2013 Enter your company name

Syntax

property PortLabel: string;

Remarks

Use the PortLabel property to specify a prompt for port number edit.

© 1997-2013 Devart. All Rights Reserved.

16.21.1.1.2.4 ProviderLabel Property

Used to specify a prompt for provider name.

Class

TUniConnectDialog

Syntax

property ProviderLabel: string;

Remarks

Use the ProviderLabel property to specify a prompt for provider name.

© 1997-2013 Devart. All Rights Reserved.

16.22 UniDump

This unit contains the implementation of the TUniDump component.

Classes

Name Description

TUniDump The class that serves for
storing data from tables or
editable views as a script
and for restoring data from a
received script.

© 1997-2013 Devart. All Rights Reserved.

16.22.1 Classes

Classes in the UniDump unit.

Classes

Name Description

TUniDump The class that serves for
storing data from tables or
editable views as a script
and for restoring data from a
received script.

Universal Data Access Components670

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.22.1.1 TUniDump Class

The class that serves for storing data from tables or editable views as a script and
for restoring data from a received script.
For a list of all members of this type, see TUniDump members.

Unit

UniDump

Syntax

TUniDump = class(TDADump);

Remarks

TUniDump serves to store data from tables or editable views as a script and to
restore data from a received script.
Use the TDADump.TableNames property to specify the list of objects to be stored.
To launch a generating script, call the TDADump.Backup method.
TUniDump also can generate scripts for a query. Just call the TDADump.
BackupQuery method and pass a query statement into it. The object list assigned to
the TableNames property is ignored if you call TDADump.BackupQuery. The
generated script can be viewed in the TDADump.SQL property.
TUniDump works on the client side. It causes large network loading.

Inheritance Hierarchy

TDADump
 TUniDump

© 1997-2013 Devart. All Rights Reserved.

16.22.1.1.1 Members

TUniDump class overview.

Properties

Name Description

Connection (inherited from TDADump) Used to specify a connection
object that will be used to
connect to a data store.

Debug (inherited from TDADump) Used to display executing
statement, all its
parameters' values, and the
type of parameters.

Options (inherited from TDADump) Used to specify the
behaviour of a TDADump
component.

SQL (inherited from TDADump) Used to set or get the dump
script.

TableNames (inherited from TDADump) Used to set the names of the
tables to dump.

Reference 671

© 2013 Enter your company name

Methods

Name Description

Backup (inherited from TDADump) Dumps database objects to
the TDADump.SQL property.

BackupQuery (inherited from TDADump) Dumps the results of a
particular query.

BackupToFile (inherited from TDADump) Dumps database objects to
the specified file.

BackupToStream (inherited from TDADump) Dumps database objects to
the stream.

Restore (inherited from TDADump) Executes a script contained
in the SQL property.

RestoreFromFile (inherited from TDADump) Executes a script from a file.

RestoreFromStream (inherited from TDADump) Executes a script received
from the stream.

Events

Name Description

OnBackupProgress (inherited from TDADump) Occurs to indicate the
TDADump.Backup, M:
Devart.Dac.TDADump.
BackupToFile(System.
String) or M:Devart.Dac.
TDADump.BackupToStream
(Borland.Vcl.TStream)
method execution progress.

OnError (inherited from TDADump) Occurs when server raises
some error on TDADump.
Restore.

OnRestoreProgress (inherited from TDADump) Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile,
or TDADump.
RestoreFromStream method
execution progress.

© 1997-2013 Devart. All Rights Reserved.

16.23 UniLoader

This unit contains the implementation of the TUniLoader component.

Classes

Name Description

TUniLoader TUniLoader allows to load
external data into a
database table.

Universal Data Access Components672

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.23.1 Classes

Classes in the UniLoader unit.

Classes

Name Description

TUniLoader TUniLoader allows to load
external data into a
database table.

© 1997-2013 Devart. All Rights Reserved.

16.23.1.1 TUniLoader Class

TUniLoader allows to load external data into a database table.
For a list of all members of this type, see TUniLoader members.

Unit

UniLoader

Syntax

TUniLoader = class(TDALoader);

Remarks

TUniLoader serves for fast loading of data to the database. To specify the name of
the loading table set the TableName property. Use the Columns property to access
individual columns. Write OnGetColumnData or OnPutData event handlers to read
external data and pass it to the database. Call the Load method to start loading
data.
For each type of database server TUniLoader uses its specific interfaces for loading
with maximum speed.
For Oracle the Direct Path Load interface is used.
For SQL Server loading is based on the memory-based bulk-copy operations using
the IRowsetFastLoad interface.
For PostgreSQL data are loaded using the COPY command.
For MySQL, InterBase, and Firebird loading uses INSERT SQL statements. In this
case several rows are combined in one statement if possible. In Firebird 2.0 and
higher INSERT statements are combined in one EXECUTE BLOCK statement.

Inheritance Hierarchy

TDALoader
 TUniLoader

© 1997-2013 Devart. All Rights Reserved.

16.23.1.1.1 Members

TUniLoader class overview.

Properties

Reference 673

© 2013 Enter your company name

Name Description

Columns (inherited from TDALoader) Used to add a TDAColumn
object for each field that will
be loaded.

Connection (inherited from TDALoader) Used to specify
TCustomDAConnection in
which TDALoader will be
executed.

TableName (inherited from TDALoader) Used to specify the name of
the table to which data will
be loaded.

Methods

Name Description

CreateColumns (inherited from TDALoader) Creates TDAColumn objects
for all fields of the table with
the same name as
TDALoader.TableName.

Load (inherited from TDALoader) Starts loading data.

LoadFromDataSet (inherited from TDALoader) Loads data from the
specified dataset.

PutColumnData (inherited from TDALoader) Overloaded. Puts the value
of individual columns.

Events

Name Description

OnGetColumnData (inherited from TDALoader) Occurs when it is needed to
put column values.

OnProgress (inherited from TDALoader) Occurs if handling data
loading progress of the
TDALoader.
LoadFromDataSet method is
needed.

OnPutData (inherited from TDALoader) Occurs when putting loading
data by rows is needed.

© 1997-2013 Devart. All Rights Reserved.

16.24 UniProvider

This unit contains the TUniProvider class for linking the server-specific providers to
application.

Classes

Name Description

Universal Data Access Components674

© 2013 Enter your company name

TUniProvider A base class components
that are intended to link the
server-specific providers to
application.

© 1997-2013 Devart. All Rights Reserved.

16.24.1 Classes

Classes in the UniProvider unit.

Classes

Name Description

TUniProvider A base class components
that are intended to link the
server-specific providers to
application.

© 1997-2013 Devart. All Rights Reserved.

16.24.1.1 TUniProvider Class

A base class components that are intended to link the server-specific providers to
application.
For a list of all members of this type, see TUniProvider members.

Unit

UniProvider

Syntax

TUniProvider = class(TComponent);

Remarks

TUniProvider is a base class for components that are intended to link the server-
specific providers to application.

© 1997-2013 Devart. All Rights Reserved.

16.24.1.1.1 Members

TUniProvider class overview.

© 1997-2013 Devart. All Rights Reserved.

16.25 UniScript

This unit contains the implementation of the TUniScript component.

Classes

Name Description

Reference 675

© 2013 Enter your company name

TUniScript A component for executing
several SQL statements one
by one.

© 1997-2013 Devart. All Rights Reserved.

16.25.1 Classes

Classes in the UniScript unit.

Classes

Name Description

TUniScript A component for executing
several SQL statements one
by one.

© 1997-2013 Devart. All Rights Reserved.

16.25.1.1 TUniScript Class

A component for executing several SQL statements one by one.
For a list of all members of this type, see TUniScript members.

Unit

UniScript

Syntax

TUniScript = class(TDAScript);

Remarks

Often it is necessary to execute several SQL statements one by one. Known way is
using a lot of components such as TUniSQL. Usually it is not a good solution. With
only one TUniScript component you can execute several SQL statements as one.
This sequence of statements is named script. To separate single statements use
semicolon (;), slash (/) ,and for PL/SQL in Oracle - only slash,also keyword 'GO' for
SQL Server and DELIMITER for MySQL server. Note that slash must be the first
character in line.
Errors that occur while execution can be processed in the TDAScript.OnError event
handler. By default, on error TUniScript shows exception and continues execution.

Inheritance Hierarchy

TDAScript
 TUniScript

See Also

 TUniSQL

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components676

© 2013 Enter your company name

16.25.1.1.1 Members

TUniScript class overview.

Properties

Name Description

Connection Used to specify the
connection in which the
script will be executed.

DataSet Used to retrieve the results
of SELECT statements
execution inside a script.

Debug (inherited from TDAScript) Used to display the script
execution and all its
parameter values.

Delimiter (inherited from TDAScript) Used to set the delimiter
string that separates script
statements.

EndLine (inherited from TDAScript) Used to get the current
statement last line number
in a script.

EndOffset (inherited from TDAScript) Used to get the offset in the
last line of the current
statement.

EndPos (inherited from TDAScript) Used to get the end position
of the current statement.

Macros (inherited from TDAScript) Used to change SQL script
text in design- or run-time
easily.

SpecificOptions Provides extended settings
for each data provider.

SQL (inherited from TDAScript) Used to get or set script
text.

StartLine (inherited from TDAScript) Used to get the current
statement start line number
in a script.

StartOffset (inherited from TDAScript) Used to get the offset in the
first line of the current
statement.

StartPos (inherited from TDAScript) Used to get the start
position of the current
statement in a script.

Statements (inherited from TDAScript) Contains a list of statements
obtained from the SQL
property.

Reference 677

© 2013 Enter your company name

Transaction Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

Methods

Name Description

BreakExec (inherited from TDAScript) Stops script execution.

ErrorOffset (inherited from TDAScript) Used to get the offset of the
statement if the Execute
method raised an exception.

Execute (inherited from TDAScript) Executes a script.

ExecuteFile (inherited from TDAScript) Executes SQL statements
contained in a file.

ExecuteNext (inherited from TDAScript) Executes the next statement
in the script and then stops.

ExecuteStream (inherited from TDAScript) Executes SQL statements
contained in a stream
object.

FindMacro (inherited from TDAScript) Indicates whether a
specified macro exists in a
dataset.

MacroByName (inherited from TDAScript) Finds a Macro with the name
passed in Name.

Events

Name Description

AfterExecute (inherited from TDAScript) Occurs after a SQL script
execution.

BeforeExecute (inherited from TDAScript) Occurs when taking a
specific action before
executing the current SQL
statement is needed.

OnError (inherited from TDAScript) Occurs when server raises
an error.

© 1997-2013 Devart. All Rights Reserved.

16.25.1.1.2 Properties

Properties of the TUniScript class.
For a complete list of the TUniScript class members, see the TUniScript Members
topic.

Public

Name Description

BreakExec (inherited from TDAScript) Stops script execution.

Universal Data Access Components678

© 2013 Enter your company name

EndLine (inherited from TDAScript) Used to get the current
statement last line number
in a script.

EndOffset (inherited from TDAScript) Used to get the offset in the
last line of the current
statement.

EndPos (inherited from TDAScript) Used to get the end position
of the current statement.

ErrorOffset (inherited from TDAScript) Used to get the offset of the
statement if the Execute
method raised an exception.

Execute (inherited from TDAScript) Executes a script.

ExecuteFile (inherited from TDAScript) Executes SQL statements
contained in a file.

ExecuteNext (inherited from TDAScript) Executes the next statement
in the script and then stops.

ExecuteStream (inherited from TDAScript) Executes SQL statements
contained in a stream
object.

FindMacro (inherited from TDAScript) Indicates whether a
specified macro exists in a
dataset.

MacroByName (inherited from TDAScript) Finds a Macro with the name
passed in Name.

StartLine (inherited from TDAScript) Used to get the current
statement start line number
in a script.

StartOffset (inherited from TDAScript) Used to get the offset in the
first line of the current
statement.

StartPos (inherited from TDAScript) Used to get the start
position of the current
statement in a script.

Statements (inherited from TDAScript) Contains a list of statements
obtained from the SQL
property.

Published

Name Description

AfterExecute (inherited from TDAScript) Occurs after a SQL script
execution.

BeforeExecute (inherited from TDAScript) Occurs when taking a
specific action before
executing the current SQL
statement is needed.

Connection Used to specify the
connection in which the
script will be executed.

Reference 679

© 2013 Enter your company name

DataSet Used to retrieve the results
of SELECT statements
execution inside a script.

Debug (inherited from TDAScript) Used to display the script
execution and all its
parameter values.

Delimiter (inherited from TDAScript) Used to set the delimiter
string that separates script
statements.

Macros (inherited from TDAScript) Used to change SQL script
text in design- or run-time
easily.

OnError (inherited from TDAScript) Occurs when server raises
an error.

SpecificOptions Provides extended settings
for each data provider.

SQL (inherited from TDAScript) Used to get or set script
text.

Transaction Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

See Also
 TUniScript Class
 TUniScript Class Members

© 1997-2013 Devart. All Rights Reserved.

16.25.1.1.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class

TUniScript

Syntax

property Connection: TUniConnection;

Remarks

Use the Connection property to specify the connection in which the script will be
executed. If Connection is not connected, the TDAScript.Execute method calls the
Connect method of Connection.

See Also

 TUniConnection

Universal Data Access Components680

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.25.1.1.2.2 DataSet Property

Used to retrieve the results of SELECT statements execution inside a script.

Class

TUniScript

Syntax

property DataSet: TCustomUniDataSet;

Remarks

Use the DataSet property to retrieve the results of SELECT statements execution
inside a script.

See Also

 TDAScript.Execute

© 1997-2013 Devart. All Rights Reserved.

16.25.1.1.2.3 SpecificOptions Property

Provides extended settings for each data provider.

Class

TUniScript

Syntax

property SpecificOptions: _TStrings;

Remarks

Use the SpecificOptions property to provide extended settings for each data
provider. SpecificOptions can be setup both design time and run time.
At design time call the component editor by double click on it, and select the
Options tab in the editor. Calling the SpecificOptions editor from the Object
Inspector will open the component editor with Options tab active. Type or select the
provider name, and change values of required properties. Then you can either close
the editor, or select another provider name. Settings for all providers will be saved.
SpecificOptions can be setup at the same time for all providers that supposed to be
used.
All options are applied right before executing. If an option name is not recognized,
an exception is raised and commands are not executed.

Example

You can also setup specific options at run time. Either of two formats can be used:
1.Using the provider name in an option name;

Reference 681

© 2013 Enter your company name

2.Not using the provider name in an option name

In the second case options will be applied to the current provider, namely to the
provider specified in the TUniConnection.ProviderName property of assigned
connection.
When you set the AutoDDL option like it is shown in the second example, you can
execute the script with the InterBase provider, but attempt to execute it with other
providers will fail.
Example 1.
 UniScript1.SpecificOptions.Add('InterBase.AutoDDL=True')
Example 2.
 UniScript1.SpecificOptions.Add('AutoDDL=True')

See Also


TUniConnection.ProviderName
 UniDAC and Oracle
 UniDAC and SQL Server
 UniDAC and MySQL
 UniDAC and InterBase/Firebird
 UniDAC and PostgreSQL

© 1997-2013 Devart. All Rights Reserved.

16.25.1.1.2.4 Transaction Property

Used to specify the TUniTransaction object in the context of which SQL commands
will be executed, and queries retrieving data will be opened.

Class

TUniScript

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to specify the TUniTransaction object in the context of
which SQL commands will be executed, and queries retrieving data will be opened.
If this property is not specified, the default transaction associated with linked
TUniConnection will be used. This transaction will work in AutoCommit mode.

© 1997-2013 Devart. All Rights Reserved.

16.26 UniSQLMonitor

This unit contains the implementation of the TUniSQLMonitor component.

Classes

Name Description

Universal Data Access Components682

© 2013 Enter your company name

TUniSQLMonitor This component serves for
monitoring dynamic SQL
execution in UniDAC-based
applications.

© 1997-2013 Devart. All Rights Reserved.

16.26.1 Classes

Classes in the UniSQLMonitor unit.

Classes

Name Description

TUniSQLMonitor This component serves for
monitoring dynamic SQL
execution in UniDAC-based
applications.

© 1997-2013 Devart. All Rights Reserved.

16.26.1.1 TUniSQLMonitor Class

This component serves for monitoring dynamic SQL execution in UniDAC-based
applications.
For a list of all members of this type, see TUniSQLMonitor members.

Unit

UniSQLMonitor

Syntax

TUniSQLMonitor = class(TCustomDASQLMonitor);

Remarks

Use TUniSQLMonitor to monitor dynamic SQL execution in UniDAC-based
applications. TUniSQLMonitor provides two ways of displaying debug information:
with dialog window, DBMonitor or Borland SQL Monitor. Furthermore to receive
debug information the TCustomDASQLMonitor.OnSQL event can be used. Also it is
possible to use all these ways at the same time, though an application may have
only one TUniSQLMonitor object. If an application has no TUniSQLMonitor instance,
the Debug window is available to display SQL statements to be sent.

Inheritance Hierarchy

TCustomDASQLMonitor
 TUniSQLMonitor

See Also

 TCustomDADataSet.Debug
 TCustomDASQL.Debug
 DBMonitor

Reference 683

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.26.1.1.1 Members

TUniSQLMonitor class overview.

Properties

Name Description

Active (inherited from TCustomDASQLMonitor) Used to activate monitoring
of SQL.

DBMonitorOptions (inherited from
TCustomDASQLMonitor)

Used to set options for
dbMonitor.

Options (inherited from TCustomDASQLMonitor
)

Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags (inherited from
TCustomDASQLMonitor)

Used to specify which
database operations the
monitor should track in an
application at runtime.

Events

Name Description

OnSQL (inherited from TCustomDASQLMonitor) Occurs when tracing of SQL
activity on database
components is needed.

© 1997-2013 Devart. All Rights Reserved.

16.27 VirtualTable

This unit contains implementation of the TVirtualTable component.

Classes

Name Description

TVirtualTable A base class for storing data
in memory.

Types

Name Description

TVirtualTableOptions Represents the set of
TVirtualTableOption.

Enumerations

Name Description

TVirtualTableOption Specifies the actions to take
on fields data at the time of
opening or closing
TVirtualTable dataset.

Universal Data Access Components684

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.27.1 Classes

Classes in the VirtualTable unit.

Classes

Name Description

TVirtualTable A base class for storing data
in memory.

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1 TVirtualTable Class

A base class for storing data in memory.
For a list of all members of this type, see TVirtualTable members.

Unit

VirtualTable

Syntax

TVirtualTable = class(TMemDataSet);

Remarks

TVirtualTable is inherited from the TMemDataSet component. TVirtualTable stores
data in memory and does not have linked data files. To add fields to virtual table at
design time use Fields Editor. Call the TVirtualTable.AddField method to add fields
at run time.
Immediately after creating, virtual table will be empty. Then you define new fields
or load existing table files so that the virtual table object becomes initialized and
ready to be opened.
When you close virtual table it will discard its record set. To keep the data you
entered at design-time for later use you may wish to include the voStored option in
the TVirtualTable.Options property. At run time you will need to call the
TVirtualTable.SaveToFile method explicitly to store modifications to the file that
may be retrieved back into the virtual table by calling the TVirtualTable.
LoadFromFile method later.
Note: TVirtualTable component is added to the Data Access page of the component
palette, not to the server Access page.

Inheritance Hierarchy

TMemDataSet
 TVirtualTable

© 1997-2013 Devart. All Rights Reserved.

Reference 685

© 2013 Enter your company name

16.27.1.1.1 Members

TVirtualTable class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Options Used to specify actions to
take on the fields data at the
time of opening or closing
TVirtualTable dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

AddField Adds a new TFieldDef object
with the name determined
by Name.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

Assign Copies fields and data from
another TDataSet
component.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Universal Data Access Components686

© 2013 Enter your company name

Clear Removes all records from
TVirtualTable.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteField Deletes a field specified by
name.

DeleteFields Deletes all fields.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

LoadFromFile Loads data from file into a
TVirtualTable component.

LoadFromStream Copies data of a stream into
a TVirtualTable component.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToFile Saves data of a
TVirtualTable component to
a file.

SaveToStream Copies data from a
TVirtualTable component to
a stream.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

Reference 687

© 2013 Enter your company name

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.2 Properties

Properties of the TVirtualTable class.
For a complete list of the TVirtualTable class members, see the TVirtualTable
Members topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

Universal Data Access Components688

© 2013 Enter your company name

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

Reference 689

© 2013 Enter your company name

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

Published

Name Description

Options Used to specify actions to
take on the fields data at the
time of opening or closing
TVirtualTable dataset.

See Also
 TVirtualTable Class
 TVirtualTable Class Members

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.2.1 Options Property

Used to specify actions to take on the fields data at the time of opening or closing
TVirtualTable dataset.

Class

TVirtualTable

Syntax

property Options: TVirtualTableOptions default [voPersistentData,
voStored];

Remarks

The Options property specifies what actions to take on the fields data at the time of
opening or closing TVirtualTable dataset.

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3 Methods

Methods of the TVirtualTable class.
For a complete list of the TVirtualTable class members, see the TVirtualTable
Members topic.

Universal Data Access Components690

© 2013 Enter your company name

Public

Name Description

AddField Adds a new TFieldDef object
with the name determined
by Name.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

Assign Copies fields and data from
another TDataSet
component.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable
the use of cached updates
for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Clear Removes all records from
TVirtualTable.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteField Deletes a field specified by
name.

DeleteFields Deletes all fields.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob
object for a field or current
record when only its name
or the field itself is known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset
is sorted.

LoadFromFile Loads data from file into a
TVirtualTable component.

LoadFromStream Copies data of a stream into
a TVirtualTable component.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit
update of rows on database
server.

Reference 691

© 2013 Enter your company name

Locate (inherited from TMemDataSet) Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle
the updates.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for
a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or
not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to
the current record when
cached updates are enabled.

SaveToFile Saves data of a
TVirtualTable component to
a file.

SaveToStream Copies data from a
TVirtualTable component to
a stream.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateRecordTypes (inherited from
TMemDataSet)

Used to indicate the update
status for the current record
when cached updates are
enabled.

Universal Data Access Components692

© 2013 Enter your company name

UpdateResult (inherited from TMemDataSet) Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when
cached updates are enabled.

See Also
 TVirtualTable Class
 TVirtualTable Class Members

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.1 AddField Method

Adds a new TFieldDef object with the name determined by Name.

Class

TVirtualTable

Syntax

procedure AddField(Name: string; FieldType: TFieldType; Size:
integer = 0; Required: boolean = False);
Parameters

Name
Holds the name of the TFieldDef object to add.

FieldType
Holds the type of the TFieldDef object to add.

Size
Holds the size of the string (if the type of TFieldDef object was specifiad as
ftString or ftWideString).

Required
Holds an indicator that determines whether filling the Size parameter is required.

Remarks

Call the AddField method to add a new TFieldDef object with the name determined
by Name. FieldType can be ftString, ftWideString, ftSmallint, ftInteger, ftAutoInc,
ftWord, ftBoolean, ftLargeint, ftFloat, ftCurrency, ftDate, ftTime, ftDateTime, ftBlob,
or ftMemo. When you add ftString or ftWideString field you should specify Size of
the string.

Example

VirtualTable1.AddField('CODE', ftInteger, 0);
VirtualTable1.AddField('NAME', ftString, 30);

Reference 693

© 2013 Enter your company name

See Also


DeleteField
 DeleteFields

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.2 Assign Method

Copies fields and data from another TDataSet component.

Class

TVirtualTable

Syntax

procedure Assign(Source: TPersistent); override;
Parameters

Source
Holds the TDataSet component to copy fields and data from.

Remarks

Call the Assign method to copy fields and data from another TDataSet component.
Note: Unsupported field types are skipped (i.e. destination dataset will contain less
fields than the source one). This may happen when Source is not a TVirtualTable
component but some SQL server oriented dataset.

Example

UniQuery1.SQL.Text := 'SELECT * FROM DEPT';
UniQuery1.Active := True;
VirtualTable1.Assign(UniQuery1);
VirtualTable1.Active := True;

See Also


TVirtualTable

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.3 Clear Method

Removes all records from TVirtualTable.

Class

TVirtualTable

Universal Data Access Components694

© 2013 Enter your company name

Syntax

procedure Clear;

Remarks

Call the Clear method to remove all records from TVirtualTable.

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.4 DeleteField Method

Deletes a field specified by name.

Class

TVirtualTable

Syntax

procedure DeleteField(Name: string);
Parameters

Name
Holds the name of the field to delete.

Remarks

Call the DeleteField method to delete a field specified by Name.

See Also

 AddField
 DeleteFields

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.5 DeleteFields Method

Deletes all fields.

Class

TVirtualTable

Syntax

procedure DeleteFields;

Remarks

Call the DeleteFields method to delete all fields.

See Also

 DeleteField

Reference 695

© 2013 Enter your company name

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.6 LoadFromFile Method

Loads data from file into a TVirtualTable component.

Class

TVirtualTable

Syntax

procedure LoadFromFile(const FileName: string; LoadFields: boolean
= True);
Parameters

FileName
Holds the name of the file to load data from.

LoadFields
Indicates whether to load fields from the file.

Remarks

Call the LoadFromFile method to load data from file into a TVirtualTable component.
Specify the name of the file to load into the field as the value of the FileName
parameter.This file may be an XML document in ADO-compatible format or in virtual
table data format. File format will be detected automatically.

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.7 LoadFromStream Method

Copies data of a stream into a TVirtualTable component.

Class

TVirtualTable

Syntax

procedure LoadFromStream(Stream: TStream; LoadFields: boolean =
True);
Parameters

Stream
Holds the stream from which the field's value is copied.

LoadFields
Indicates whether to load fields from the stream.

Remarks

Call the LoadFromStream method to copy data of a stream into a TVirtualTable
component. Specify the stream from which the field's value is copied as the value of
the Stream parameter. Data in the stream may be in ADO-compatible format or in
virtual table data format. Data format will be detected automatically.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components696

© 2013 Enter your company name

16.27.1.1.3.8 SaveToFile Method

Saves data of a TVirtualTable component to a file.

Class

TVirtualTable

Syntax

procedure SaveToFile(const FileName: string; StoreFields: boolean
= True);
Parameters

FileName
Holds the name of the file to save data to.

StoreFields
Indicates whether to save fields to a file.

Remarks

Call the SaveToFile method to save data of a TVirtualTable component to a file.
Specify the name of the file as the value of the FileName parameter.

© 1997-2013 Devart. All Rights Reserved.

16.27.1.1.3.9 SaveToStream Method

Copies data from a TVirtualTable component to a stream.

Class

TVirtualTable

Syntax

procedure SaveToStream(Stream: TStream; StoreFields: boolean =
True);
Parameters

Stream
Holds the name of the stream to which the field's value is saved.

StoreFields
Indicates whether to save the fields names to a file.

Remarks

Call the SaveToStream method to copy data from a TVirtualTable component to a
stream. Specify the name of the stream to which the field's value is saved as the
value of the Stream parameter.

© 1997-2013 Devart. All Rights Reserved.

16.27.2 Types

Types in the VirtualTable unit.

Types

Reference 697

© 2013 Enter your company name

Name Description

TVirtualTableOptions Represents the set of
TVirtualTableOption.

© 1997-2013 Devart. All Rights Reserved.

16.27.2.1 TVirtualTableOptions Set

Represents the set of TVirtualTableOption.

Unit

VirtualTable

Syntax

TVirtualTableOptions = set of TVirtualTableOption;

© 1997-2013 Devart. All Rights Reserved.

16.27.3 Enumerations

Enumerations in the VirtualTable unit.

Enumerations

Name Description

TVirtualTableOption Specifies the actions to take
on fields data at the time of
opening or closing
TVirtualTable dataset.

© 1997-2013 Devart. All Rights Reserved.

16.27.3.1 TVirtualTableOption Enumeration

Specifies the actions to take on fields data at the time of opening or closing
TVirtualTable dataset.

Unit

VirtualTable

Syntax

TVirtualTableOption = (voPersistentData, voStored);

Values

Value Meaning

voPersistentData Dataset will not dispose of its data at the time of dataset
closing.

voStored Dataset will keep its data set at design-time in DFM file
along with other form's stored properties.

© 1997-2013 Devart. All Rights Reserved.

Universal Data Access Components698

© 2013 Enter your company name

Index
- 6 -
64-bit Development with Embarcadero RAD Studio
XE2 92

- A -
AbortOnKeyViol Property 157

AbortOnProblem Property 157

Active Property

TCustomDASQLMonitor 249

TDAAlerter 187

TDATransaction 426

TMacro 431

ActiveMacroValueByName Method 559

AddConnection Method 658

AddDBTypeRule Method 392

AddDrop Property 204

AddField Method 692

AddFieldNameRule Method 397

AddRef Method 484

AddRule Method 399

AddWhere Method 324

AfterExecute Event

TCustomDADataSet 341

TCustomDASQL 359

TDAScript 236

AfterFetch Event 342

AfterUpdateExecute Event 342

Apply Method 367

ApplyUpdates Method

ApplyUpdates 498, 499

TCustomDAConnection 280

TMemDataSet 498

AsBlob Property 413

AsBlobRef Property 413

AsDateTime Property 432

AsFloat Property

TDAParam 414

TMacro 432

AsInteger Property

TDAParam 414

TMacro 432

AsLargeInt Property 414

AsMemo Property 415

AsMemoRef Property 415

Assign Method

TBlob 467

TVirtualTable 693

AssignConnect Method 559

AssignField Method 419

AssignFieldValue Method 419

AssignValues Method 436

AsSQLTimeStamp Property 415

AsString Property

TBlob 465

TDAParam 416

TMacro 433

AsWideString Property

TBlob 465

TDAParam 416

AttributeByName Method 480

AttributeCount Property 478

AttributeNo Property 459

Attributes Property(Indexer) 478

AutoPrepare Property 376

AutoRegister Property 187

- B -
Backup Method 198

BackupQuery Method 198

BackupToFile Method 199

BackupToStream Method 199

BaseSQL Property 304

BeforeExecute Event 236

BeforeFetch Event 342

BeforeUpdateExecute Event 343

bmAppend 164

bmAppendUpdate 164

bmDelete 164

bmUpdate 164

BreakExec Method

TCustomDADataSet 324

TDAScript 232

TUniSQL 605

- C -
CacheCalcFields Property 376

Index 699

© 2013 Enter your company name

CachedUpdates Property 493

CancelButton Property 265

CancelUpdates Method 500

Caption Property 266

cbClient 486

cbClientServer 486

cbNone 486

cbServer 486

ChangeCursor Property 347

ChangeCursor Variable 447

ChangedCount Property 157

clApply 487

clConnect 487

clConnectionApply 487

Clear Method

TBlob 468

TVirtualTable 693

clExecute 487

clOpen 487

clRefresh 487

clServiceQuery 487

clTransStart 487

clUnknown 487

Columns Property 213

Commit Method

TCustomDAConnection 281

TDATransaction 427

CommitCount Property 158

CommitRetaining Method 560

CommitUpdates Method 501

Compatibility 41

Compatibility with Previous Versions 91

Component List 39

Component Property 262

CompressBlobMode Property 377

Compressed Property 475

CompressedSize Property 475

Condition Property 569

Connect Method 282

ConnectButton Property 266

ConnectDialog Property 273

Connecting to Database 49

Connection Property

TCustomDADataSet 304

TCustomDASQL 347

TDAAlerter 188

TDADump 195

TDALoader 213

TDAMetaData 405

TDAScript 226

TUniAlerter 664

TUniConnectDialog 668

TUniMetaData 576

TUniScript 679

TUniSQL 601

ConnectionLifetime Property 440

Connections Property(Indexer) 656

ConnectionsCount Property 657

ConvertEOL Property 274

CRAccess Unit Members 149

CRBatchMove Unit Members 152

CRDataTypeMap Unit Members 165

CreateBlobStream Method 325

CreateColumns Method 214

CreateDataSet Method

TCustomDAConnection 282

TUniConnection 560

CreateProcCall Method

TCustomUniDataSet 543

TUniSQL 605

CreateSQL Method

TCustomDAConnection 283

TUniConnection 561

CreateTransaction Method 561

CREncryption Unit Members 172

CRVio Unit Members 179

- D -
DAAlerter Unit Members 185

DADataAdapter Class 448

DADataAdapter.DataSet Property 449

DADataAdapter.Fill Method 450

DADataAdapter.Update Method 451

DADump Unit Members 191

DALoader Unit Members 207

DAScript Unit Members 221

DASQLMonitor Unit Members 247

Data Encryption 76

Data Type Mapping 70

Data Types 52

Database Property 553

Database Specific Aspects of 64-bit Development
145

DatabaseLabel Property 668

DataHeader Property 174

Universal Data Access Components700

© 2013 Enter your company name

DataSet Manager 86

DataSet Property

DADataAdapter 449

TCustomDAUpdateSQL 362

TDAScript 226

TUniScript 680

DataSize Property 460

DataType Property

TAttribute 460

TDAParam 417

TObjectType 479

DBAccess Unit Members 257

DBLengthMax Property

TDAMapRule 387

TMapRule 170

DBLengthMin Property

TDAMapRule 387

TMapRule 170

DBMonitor 90

DBMonitorOptions Property 250

DBScaleMax Property

TDAMapRule 388

TMapRule 170

DBScaleMin Property

TDAMapRule 388

TMapRule 171

DBType Property

TDAMapRule 388

TMapRule 171

Debug Property

TCustomDADataSet 305

TCustomDASQL 347

TDADump 195

TDAScript 227

DefaultCloseAction Property 427

DefaultSortType Property 370

DefaultValues Property 377

DeferredPost Method 501

DeleteField Method 694

DeleteFields Method 694

DeleteObject Property 362

DeleteSQL Property 363

DeleteWhere Method 325

Delimiter Property 227

Demo Projects 32

Deployment 46

Destination Property 158

DetailDelay Property 378

DetailFields Property 305

Devart.Dac.DataAdapter Unit Members 447

Devart.UniDac.DataAdapter Unit Members 452

DialogClass Property 266

Disconnect Method 283

Disconnected Mode 69

Disconnected Property 306

DisconnectedMode Property 371

DMLRefresh Property 532

- E -
eaAbort 246

eaAES128 178

eaAES192 178

eaAES256 178

eaBlowfish 178

eaCast128 178

eaContinue 246

eaException 246

eaFail 246

eaRC4 178

eaTripleDES 178

EDAError Class 261

EDAError.Component Property 262

EDAError.ErrorCode Property 262

EDataMappingError Class 166

EDataTypeMappingError Class 166

Editions 4

ehNone 177

ehTag 177

ehTagAndHash 177

EInvalidDBTypeMapping Class 167

EInvalidFieldTypeMapping Class 167

Encryption Property 306

EncryptionAlgorithm Property 175

Encryptor Property 384

EndLine Property

TDAScript 227

TDAStatement 239

EndOffset Property

TDAScript 228

TDAStatement 240

EndPos Property

TDAScript 228

TDAStatement 240

ErrorCode Property 262

ErrorOffset Method 232

Index 701

© 2013 Enter your company name

EUnsupportedDataTypeMapping Class 168

ExecProc Method

TCustomDAConnection 284

TUniStoredProc 630

ExecProcEx Method 285

ExecSQL Method

TCustomDAConnection 286

TCustomDAUpdateSQL 368

ExecSQLEx Method 287

Execute Method

Execute 354

TCRBatchMove 162

TCustomConnectDialog 270

TCustomDADataSet 326

TCustomDASQL 353

TDAScript 233

TDAStatement 243

ExecuteFile Method 233

ExecuteNext Method 233

ExecuteStream Method 234

Executing Method

TCustomDADataSet 326

TCustomDASQL 354

Executing Stored Procedures 64

- F -
Features 25

Fetched Method 326

Fetching Method 327

FetchingAll Method 327

FetchRows Property 306

FieldLength Property

TDAMapRule 389

TMapRule 171

FieldMappingMode Property 158

FieldName Property

TDAMapRule 389

TMapRule 171

Fields Property 385

FieldScale Property

TDAMapRule 389

TMapRule 172

FieldsOrigin Property 378

FieldType Property

TDAColumn 209

TDAMapRule 390

Fill Method 450

FilterSQL Property 307

FinalSQL Property

TCustomDADataSet 307

TCustomDASQL 348

FindAttribute Method 481

FindKey Method 328

FindMacro Method

TCustomDADataSet 328

TCustomDASQL 355

TDAScript 234

TMacros 436

FindNearest Method 329

FindParam Method

TCustomDADataSet 330

TCustomDASQL 355

TCustomUniDataSet 543

TDAParams 424

TUniSQL 606

FlatBuffers Property 378

- G -
GenerateHeader Property 205

GetBlob Method 502

GetDatabaseNames Method 288

GetDataType Method 330

GetFieldObject Method 331

GetFieldPrecision Method 331

GetFieldScale Method 332

GetMetaDataKinds Method 409

GetOrderBy Method 332

GetRestrictions Method 409

GetServerList Method 270

GetStoredProcNames Method 288

GetTableNames Method 289

Getting Started 6

Getting Support 48

GotoCurrent Method 333

- H -
haMD5 178

haSHA1 178

HashAlgorithm Property 175

Host Property 253

Hostname Property 184

Universal Data Access Components702

© 2013 Enter your company name

- I -
IgnoreErrors Property

TDAMapRule 390

TMapRule 172

ihFail 179

ihIgnoreError 179

ihSkipData 179

ilReadCommitted 151

Increasing Performance 77

IndexFieldNames Property 494

InsertObject Property 363

InsertSQL Property 364

InTransaction Property 274

InvalidHashAction Property 175

IsEqual Method 437

IsNull Property 417

IsolationLevel Property 657

IsQuery Property 308

IsUnicode Property 466

Items Property(Indexer)

TDAColumns 210

TDAParams 423

TDAStatements 244

TMacros 435

- K -
KeepDesignConnected Property 371

KeyFields Property 308

KeyViolCount Property 159

- L -
LabelSet Property 267

LastInsertId Property

TCustomUniDataSet 532

TUniSQL 601

Length Property 460

Licensing and Subscriptions 47

LiteCollation Unit Members 453

LiteFunction Unit Members 455

Load Method 215

LoadFromDataSet Method 215

LoadFromFile Method

TBlob 468

TDAParam 420

TVirtualTable 695

LoadFromStream Method

TBlob 468

TDAParam 420

TVirtualTable 695

LocalConstraints Property 495

LocalFailover Property 371

LocalMasterDetail Property 379

LocalUpdate Property 495

Locate Method 503

LocateEx Method 505

Lock Method 333

LockMode Property

TUniQuery 595

TUniStoredProc 622

TUniTable 645

LockObject Property 364

LockSQL Property 364

LoginPrompt Property 275

LongStrings Property 379

lsCustom 445

lsEnglish 445

lsFrench 445

lsGerman 445

lsItalian 445

lsPolish 445

lsPortuguese 445

lsRussian 445

lsSpanish 445

lxCaseInsensitive 488

lxNearest 488

lxNext 488

lxPartialCompare 488

lxPartialKey 488

lxUp 488

- M -
MacroByName Method

TCustomDADataSet 334

TCustomDASQL 356

TDAScript 235

TMacros 437

MacroChar Variable 447

MacroCount Property

TCustomDADataSet 309

TCustomDASQL 348

Index 703

© 2013 Enter your company name

Macros 79

Macros Property

TCustomDADataSet 309

TCustomDASQL 349

TDAScript 228

TUniConnection 554

Mappings Property 159

Master/Detail Relationships 61

MasterFields Property 310

MasterSource Property 310

MaxPoolSize Property 440

MemData Unit Members 456

MemDS Unit Members 489

MetaDataKind Property 406

Migration Wizard 92

MinPoolSize Property 440

mmFieldIndex 164

mmFieldName 164

moCustom 257

moDBMonitor 257

Mode Property 160

moDialog 257

ModifyObject Property 365

ModifySQL Property 365

moHandled 257

MonitorMessage Method 290

moSQLMonitor 257

MovedCount Property 160

- N -
Name Property

TDAColumn 209

TMacro 433

TUniMacro 569

Network Tunneling 63

ntBCD 487

ntFloat 487

ntFmtBCD 487

NumberRange Property 379

- O -
ObjectType Property 461

Offset Property 461

Omit Property 240

OnBackupProgress Event 202

OnBatchMoveProgress Event 162

OnConnectionLost Event 292

OnError Event

TCustomDAConnection 292

TDAAlerter 190

TDADump 202

TDAScript 237

TDATransaction 429

OnGetColumnData Event 218

OnProgress Event 219

OnPutData Event 219

OnRestoreProgress Event 203

OnSQL Event 251

OnUpdateError Event 511

OnUpdateRecord Event 512

OpenNext Method 544

Options Property

TCustomDAConnection 275

TCustomDADataSet 311

TCustomDASQLMonitor 250

TCustomUniDataSet 533

TDADump 196

TVirtualTable 689

OrderFields Property 646

Overview 1

Owner Property 461

- P -
ParamByName Method

TCustomDADataSet 335

TCustomDASQL 356

TCustomUniDataSet 545

TDAParams 424

TUniConnection 562

TUniSQL 607

ParamCheck Property

TCustomDADataSet 313

TCustomDASQL 349

ParamCount Property

TCustomDADataSet 313

TCustomDASQL 350

Params Property

TCustomDADataSet 314

TCustomDASQL 350

TCustomUniDataSet 533

TDAStatement 240

ParamType Property 417

Universal Data Access Components704

© 2013 Enter your company name

ParamValues Property(Indexer) 351

Password Property

TCREncryptor 176

TCustomDAConnection 276

THttpOptions 181

TProxyOptions 184

PasswordLabel Property 267

Pooling Property 276

PoolingOptions Property 277

Port Property

TDBMonitorOptions 253

TProxyOptions 184

TUniConnection 554

PortLabel Property 668

Prepare Method

TCustomDADataSet 335

TCustomDASQL 357

TMemDataSet 507

Prepared Property

TCustomDASQL 351

TMemDataSet 495

PrepareSQL Method

TUniStoredProc 630

TUniTable 654

ProblemCount Property 160

ProviderLabel Property 669

ProviderName Property 555

ProxyOptions Property 181

PutColumnData Method 216

- Q -
QueryRecCount Property 380

QuoteNames Property

TDADataSetOptions 380

TDADumpOptions 205

- R -
Read Method 469

ReadOnly Property 314

ReconnectTimeout Property 254

RecordCount Property 161

RefCount Property 483

RefreshObject Property 366

RefreshOptions Property 315

RefreshRecord Method 336

RefreshSQL Property 366

Release Method 484

ReleaseSavepoint Method 562

RemoveConnection Method 659

RemoveFromPool Method 290

RemoveOnRefresh Property 380

RequiredFields Property 381

Requirements 40

Restore Method 200

RestoreFromFile Method 200

RestoreFromStream Method 201

RestoreSQL Method 336

RestoreUpdates Method 507

Restrictions Property 406

Resync Method 337

Retries Property 268

ReturnParams Property 381

RevertRecord Method 508

rmRaise 446

rmReconnect 446

rmReconnectExecute 446

roAfterInsert 446

roAfterUpdate 446

roBeforeEdit 446

Rollback Method

TCustomDAConnection 291

TDATransaction 428

RollbackRetaining Method 563

RollbackToSavepoint Method 563

RowsAffected Property

TCustomDADataSet 315

TCustomDASQL 352

- S -
SavePassword Property 268

Savepoint Method 564

SaveSQL Method 337

SaveToFile Method

TBlob 470

TVirtualTable 696

SaveToStream Method

TBlob 470

TVirtualTable 696

SaveToXML Method 508

Scale Property 462

Scan Method 438

Script Property 241

Index 705

© 2013 Enter your company name

SendEvent Method 188

SendTimeout Property 254

Server Property 278

ServerLabel Property 268

SetBlobData Method 421

SetFieldsReadOnly Property 382

SetKey Method 177

SetOrderBy Method 338

Size Property

TAttribute 462

TBlob 466

TDAParam 418

TObjectType 479

Source Property 161

SpecificOptions Property

TCustomUniDataSet 534

TUniConnection 555

TUniScript 680

TUniSQL 602

SQL Property

TCustomDADataSet 316

TCustomDASQL 352

TDADump 196

TDAScript 229

TDAStatement 241

SQL Property(Indexer) 366

SQLDelete Property 316

SQLInsert Property 317

SQLiteUniProvider Unit Members 513

SQLLock Property 317

SQLRefresh Property 318

SQLSaved Method 338

SQLUpdate Property 319

Start Method 189

StartLine Property

TDAScript 229

TDAStatement 242

StartOffset Property

TDAScript 230

TDAStatement 242

StartPos Property

TDAScript 230

TDAStatement 242

StartTransaction Method

StartTransaction 565, 566

TCustomDAConnection 291

TDATransaction 428

TUniConnection 564

Statements Property 230

stBinary 489

stCaseInsensitive 489

stCaseSensitive 489

Stop Method 189

StoredProcName Property 622

StoreLogInfo Property 268

StrictUpdate Property 382

- T -
TableName Property

TDALoader 214

TUniTable 646

TableNames Property 197

taCommit 152

TAfterExecuteEvent Procedure Reference 442

TAfterFetchEvent Procedure Reference 442

TAfterStatementExecuteEvent Procedure Reference
 245

TAlerterErrorEvent Procedure Reference 191

TAlerterEventEvent Procedure Reference 191

taRollback 152

TAttribute Class 457

TAttribute.AttributeNo Property 459

TAttribute.DataSize Property 460

TAttribute.DataType Property 460

TAttribute.Length Property 460

TAttribute.ObjectType Property 461

TAttribute.Offset Property 461

TAttribute.Owner Property 461

TAttribute.Scale Property 462

TAttribute.Size Property 462

TBeforeFetchEvent Procedure Reference 442

TBeforeFetchProc Procedure Reference 151

TBeforeStatementExecuteEvent Procedure
Reference 245

TBlob Class 463

TBlob.Assign Method 467

TBlob.AsString Property 465

TBlob.AsWideString Property 465

TBlob.Clear Method 468

TBlob.IsUnicode Property 466

TBlob.LoadFromFile Method 468

TBlob.LoadFromStream Method 468

TBlob.Read Method 469

TBlob.SaveToFile Method 470

TBlob.SaveToStream Method 470

Universal Data Access Components706

© 2013 Enter your company name

TBlob.Size Property 466

TBlob.Truncate Method 471

TBlob.Write Method 471

TCompressBlobMode Enumeration 486

TCompressedBlob Class 472

TCompressedBlob.Compressed Property 475

TCompressedBlob.CompressedSize Property 475

TConnectionLostEvent Procedure Reference 443

TConnLostCause Enumeration 487

TCRBatchMode Enumeration 164

TCRBatchMove Class 153

TCRBatchMove.AbortOnKeyViol Property 157

TCRBatchMove.AbortOnProblem Property 157

TCRBatchMove.ChangedCount Property 157

TCRBatchMove.CommitCount Property 158

TCRBatchMove.Destination Property 158

TCRBatchMove.Execute Method 162

TCRBatchMove.FieldMappingMode Property 158

TCRBatchMove.KeyViolCount Property 159

TCRBatchMove.Mappings Property 159

TCRBatchMove.Mode Property 160

TCRBatchMove.MovedCount Property 160

TCRBatchMove.OnBatchMoveProgress Event 162

TCRBatchMove.ProblemCount Property 160

TCRBatchMove.RecordCount Property 161

TCRBatchMove.Source Property 161

TCRBatchMoveProgressEvent Procedure Reference
 163

TCRCursor Class 150

TCRDataSource Class 263

TCREncDataHeader Enumeration 177

TCREncryptionAlgorithm Enumeration 178

TCREncryptor Class 173

TCREncryptor.DataHeader Property 174

TCREncryptor.EncryptionAlgorithm Property 175

TCREncryptor.HashAlgorithm Property 175

TCREncryptor.InvalidHashAction Property 175

TCREncryptor.Password Property 176

TCREncryptor.SetKey Method 177

TCRFieldMappingMode Enumeration 164

TCRHashAlgorithm Enumeration 178

TCRInvalidHashAction Enumeration 179

TCRIsolationLevel Enumeration 151

TCRTransactionAction Enumeration 152

TCustomConnectDialog Class 263

TCustomConnectDialog.CancelButton Property
265

TCustomConnectDialog.Caption Property 266

TCustomConnectDialog.ConnectButton Property
266

TCustomConnectDialog.DialogClass Property 266

TCustomConnectDialog.Execute Method 270

TCustomConnectDialog.GetServerList Method 270

TCustomConnectDialog.LabelSet Property 267

TCustomConnectDialog.PasswordLabel Property
267

TCustomConnectDialog.Retries Property 268

TCustomConnectDialog.SavePassword Property
268

TCustomConnectDialog.ServerLabel Property 268

TCustomConnectDialog.StoreLogInfo Property 268

TCustomConnectDialog.UsernameLabel Property
269

TCustomDAConnection Class 270

TCustomDAConnection.ApplyUpdates Method 280

TCustomDAConnection.Commit Method 281

TCustomDAConnection.Connect Method 282

TCustomDAConnection.ConnectDialog Property
273

TCustomDAConnection.ConvertEOL Property 274

TCustomDAConnection.CreateDataSet Method
282

TCustomDAConnection.CreateSQL Method 283

TCustomDAConnection.Disconnect Method 283

TCustomDAConnection.ExecProc Method 284

TCustomDAConnection.ExecProcEx Method 285

TCustomDAConnection.ExecSQL Method 286

TCustomDAConnection.ExecSQLEx Method 287

TCustomDAConnection.GetDatabaseNames Method
 288

TCustomDAConnection.GetStoredProcNames
Method 288

TCustomDAConnection.GetTableNames Method
289

TCustomDAConnection.InTransaction Property
274

TCustomDAConnection.LoginPrompt Property 275

TCustomDAConnection.MonitorMessage Method
290

TCustomDAConnection.OnConnectionLost Event
292

TCustomDAConnection.OnError Event 292

TCustomDAConnection.Options Property 275

TCustomDAConnection.Password Property 276

TCustomDAConnection.Pooling Property 276

TCustomDAConnection.PoolingOptions Property
277

TCustomDAConnection.RemoveFromPool Method
290

Index 707

© 2013 Enter your company name

TCustomDAConnection.Rollback Method 291

TCustomDAConnection.Server Property 278

TCustomDAConnection.StartTransaction Method
291

TCustomDAConnection.Username Property 278

TCustomDADataSet Class 293

TCustomDADataSet.AddWhere Method 324

TCustomDADataSet.AfterExecute Event 341

TCustomDADataSet.AfterFetch Event 342

TCustomDADataSet.AfterUpdateExecute Event
342

TCustomDADataSet.BaseSQL Property 304

TCustomDADataSet.BeforeFetch Event 342

TCustomDADataSet.BeforeUpdateExecute Event
343

TCustomDADataSet.BreakExec Method 324

TCustomDADataSet.Connection Property 304

TCustomDADataSet.CreateBlobStream Method
325

TCustomDADataSet.Debug Property 305

TCustomDADataSet.DeleteWhere Method 325

TCustomDADataSet.DetailFields Property 305

TCustomDADataSet.Disconnected Property 306

TCustomDADataSet.Encryption Property 306

TCustomDADataSet.Execute Method 326

TCustomDADataSet.Executing Method 326

TCustomDADataSet.Fetched Method 326

TCustomDADataSet.Fetching Method 327

TCustomDADataSet.FetchingAll Method 327

TCustomDADataSet.FetchRows Property 306

TCustomDADataSet.FilterSQL Property 307

TCustomDADataSet.FinalSQL Property 307

TCustomDADataSet.FindKey Method 328

TCustomDADataSet.FindMacro Method 328

TCustomDADataSet.FindNearest Method 329

TCustomDADataSet.FindParam Method 330

TCustomDADataSet.GetDataType Method 330

TCustomDADataSet.GetFieldObject Method 331

TCustomDADataSet.GetFieldPrecision Method
331

TCustomDADataSet.GetFieldScale Method 332

TCustomDADataSet.GetOrderBy Method 332

TCustomDADataSet.GotoCurrent Method 333

TCustomDADataSet.IsQuery Property 308

TCustomDADataSet.KeyFields Property 308

TCustomDADataSet.Lock Method 333

TCustomDADataSet.MacroByName Method 334

TCustomDADataSet.MacroCount Property 309

TCustomDADataSet.Macros Property 309

TCustomDADataSet.MasterFields Property 310

TCustomDADataSet.MasterSource Property 310

TCustomDADataSet.Options Property 311

TCustomDADataSet.ParamByName Method 335

TCustomDADataSet.ParamCheck Property 313

TCustomDADataSet.ParamCount Property 313

TCustomDADataSet.Params Property 314

TCustomDADataSet.Prepare Method 335

TCustomDADataSet.ReadOnly Property 314

TCustomDADataSet.RefreshOptions Property 315

TCustomDADataSet.RefreshRecord Method 336

TCustomDADataSet.RestoreSQL Method 336

TCustomDADataSet.Resync Method 337

TCustomDADataSet.RowsAffected Property 315

TCustomDADataSet.SaveSQL Method 337

TCustomDADataSet.SetOrderBy Method 338

TCustomDADataSet.SQL Property 316

TCustomDADataSet.SQLDelete Property 316

TCustomDADataSet.SQLInsert Property 317

TCustomDADataSet.SQLLock Property 317

TCustomDADataSet.SQLRefresh Property 318

TCustomDADataSet.SQLSaved Method 338

TCustomDADataSet.SQLUpdate Property 319

TCustomDADataSet.UniDirectional Property 319

TCustomDADataSet.UnLock Method 339

TCustomDASQL Class 343

TCustomDASQL.AfterExecute Event 359

TCustomDASQL.ChangeCursor Property 347

TCustomDASQL.Connection Property 347

TCustomDASQL.Debug Property 347

TCustomDASQL.Execute Method 354

TCustomDASQL.Executing Method 354

TCustomDASQL.FinalSQL Property 348

TCustomDASQL.FindMacro Method 355

TCustomDASQL.FindParam Method 355

TCustomDASQL.MacroByName Method 356

TCustomDASQL.MacroCount Property 348

TCustomDASQL.Macros Property 349

TCustomDASQL.ParamByName Method 356

TCustomDASQL.ParamCheck Property 349

TCustomDASQL.ParamCount Property 350

TCustomDASQL.Params Property 350

TCustomDASQL.ParamValues Property(Indexer)
351

TCustomDASQL.Prepare Method 357

TCustomDASQL.Prepared Property 351

TCustomDASQL.RowsAffected Property 352

TCustomDASQL.SQL Property 352

Universal Data Access Components708

© 2013 Enter your company name

TCustomDASQL.UnPrepare Method 358

TCustomDASQL.WaitExecuting Method 358

TCustomDASQLMonitor Class 248

TCustomDASQLMonitor.Active Property 249

TCustomDASQLMonitor.DBMonitorOptions Property
 250

TCustomDASQLMonitor.OnSQL Event 251

TCustomDASQLMonitor.Options Property 250

TCustomDASQLMonitor.TraceFlags Property 251

TCustomDAUpdateSQL Class 359

TCustomDAUpdateSQL.Apply Method 367

TCustomDAUpdateSQL.DataSet Property 362

TCustomDAUpdateSQL.DeleteObject Property
362

TCustomDAUpdateSQL.DeleteSQL Property 363

TCustomDAUpdateSQL.ExecSQL Method 368

TCustomDAUpdateSQL.InsertObject Property 363

TCustomDAUpdateSQL.InsertSQL Property 364

TCustomDAUpdateSQL.LockObject Property 364

TCustomDAUpdateSQL.LockSQL Property 364

TCustomDAUpdateSQL.ModifyObject Property
365

TCustomDAUpdateSQL.ModifySQL Property 365

TCustomDAUpdateSQL.RefreshObject Property
366

TCustomDAUpdateSQL.RefreshSQL Property 366

TCustomDAUpdateSQL.SQL Property(Indexer)
366

TCustomUniDataSet Class 518

TCustomUniDataSet.CreateProcCall Method 543

TCustomUniDataSet.DMLRefresh Property 532

TCustomUniDataSet.FindParam Method 543

TCustomUniDataSet.LastInsertId Property 532

TCustomUniDataSet.OpenNext Method 544

TCustomUniDataSet.Options Property 533

TCustomUniDataSet.ParamByName Method 545

TCustomUniDataSet.Params Property 533

TCustomUniDataSet.SpecificOptions Property 534

TCustomUniDataSet.Transaction Property 535

TCustomUniDataSet.UpdateObject Property 535

TCustomUniDataSet.UpdateTransaction Property
536

TDAAlerter Class 185

TDAAlerter.Active Property 187

TDAAlerter.AutoRegister Property 187

TDAAlerter.Connection Property 188

TDAAlerter.OnError Event 190

TDAAlerter.SendEvent Method 188

TDAAlerter.Start Method 189

TDAAlerter.Stop Method 189

TDABackupProgressEvent Procedure Reference
206

TDAColumn Class 207

TDAColumn.FieldType Property 209

TDAColumn.Name Property 209

TDAColumns Class 209

TDAColumns.Items Property(Indexer) 210

TDAConnectionErrorEvent Procedure Reference
443

TDAConnectionOptions Class 368

TDAConnectionOptions.DefaultSortType Property
370

TDAConnectionOptions.DisconnectedMode Property
 371

TDAConnectionOptions.KeepDesignConnected
Property 371

TDAConnectionOptions.LocalFailover Property 371

TDADataSetOptions Class 372

TDADataSetOptions.AutoPrepare Property 376

TDADataSetOptions.CacheCalcFields Property
376

TDADataSetOptions.CompressBlobMode Property
377

TDADataSetOptions.DefaultValues Property 377

TDADataSetOptions.DetailDelay Property 378

TDADataSetOptions.FieldsOrigin Property 378

TDADataSetOptions.FlatBuffers Property 378

TDADataSetOptions.LocalMasterDetail Property
379

TDADataSetOptions.LongStrings Property 379

TDADataSetOptions.NumberRange Property 379

TDADataSetOptions.QueryRecCount Property 380

TDADataSetOptions.QuoteNames Property 380

TDADataSetOptions.RemoveOnRefresh Property
380

TDADataSetOptions.RequiredFields Property 381

TDADataSetOptions.ReturnParams Property 381

TDADataSetOptions.SetFieldsReadOnly Property
382

TDADataSetOptions.StrictUpdate Property 382

TDADataSetOptions.TrimFixedChar Property 382

TDADataSetOptions.UpdateAllFields Property 383

TDADataSetOptions.UpdateBatchSize Property
383

TDADump Class 192

TDADump.Backup Method 198

TDADump.BackupQuery Method 198

TDADump.BackupToFile Method 199

TDADump.BackupToStream Method 199

Index 709

© 2013 Enter your company name

TDADump.Connection Property 195

TDADump.Debug Property 195

TDADump.OnBackupProgress Event 202

TDADump.OnError Event 202

TDADump.OnRestoreProgress Event 203

TDADump.Options Property 196

TDADump.Restore Method 200

TDADump.RestoreFromFile Method 200

TDADump.RestoreFromStream Method 201

TDADump.SQL Property 196

TDADump.TableNames Property 197

TDADumpOptions Class 203

TDADumpOptions.AddDrop Property 204

TDADumpOptions.GenerateHeader Property 205

TDADumpOptions.QuoteNames Property 205

TDAEncryptionOptions Class 383

TDAEncryptionOptions.Encryptor Property 384

TDAEncryptionOptions.Fields Property 385

TDALoader Class 211

TDALoader.Columns Property 213

TDALoader.Connection Property 213

TDALoader.CreateColumns Method 214

TDALoader.Load Method 215

TDALoader.LoadFromDataSet Method 215

TDALoader.OnGetColumnData Event 218

TDALoader.OnProgress Event 219

TDALoader.OnPutData Event 219

TDALoader.PutColumnData Method 216

TDALoader.TableName Property 214

TDAMapRule Class 385

TDAMapRule.DBLengthMax Property 387

TDAMapRule.DBLengthMin Property 387

TDAMapRule.DBScaleMax Property 388

TDAMapRule.DBScaleMin Property 388

TDAMapRule.DBType Property 388

TDAMapRule.FieldLength Property 389

TDAMapRule.FieldName Property 389

TDAMapRule.FieldScale Property 389

TDAMapRule.FieldType Property 390

TDAMapRule.IgnoreErrors Property 390

TDAMapRules Class 390

TDAMapRules.AddDBTypeRule Method 392

TDAMapRules.AddFieldNameRule Method 397

TDAMapRules.AddRule Method 399

TDAMetaData Class 400

TDAMetaData.Connection Property 405

TDAMetaData.GetMetaDataKinds Method 409

TDAMetaData.GetRestrictions Method 409

TDAMetaData.MetaDataKind Property 406

TDAMetaData.Restrictions Property 406

TDANumericType Enumeration 487

TDAParam Class 410

TDAParam.AsBlob Property 413

TDAParam.AsBlobRef Property 413

TDAParam.AsFloat Property 414

TDAParam.AsInteger Property 414

TDAParam.AsLargeInt Property 414

TDAParam.AsMemo Property 415

TDAParam.AsMemoRef Property 415

TDAParam.AssignField Method 419

TDAParam.AssignFieldValue Method 419

TDAParam.AsSQLTimeStamp Property 415

TDAParam.AsString Property 416

TDAParam.AsWideString Property 416

TDAParam.DataType Property 417

TDAParam.IsNull Property 417

TDAParam.LoadFromFile Method 420

TDAParam.LoadFromStream Method 420

TDAParam.ParamType Property 417

TDAParam.SetBlobData Method 421

TDAParam.Size Property 418

TDAParam.Value Property 418

TDAParams Class 422

TDAParams.FindParam Method 424

TDAParams.Items Property(Indexer) 423

TDAParams.ParamByName Method 424

TDAPutDataEvent Procedure Reference 220

TDARestoreProgressEvent Procedure Reference
206

TDAScript Class 223

TDAScript.AfterExecute Event 236

TDAScript.BeforeExecute Event 236

TDAScript.BreakExec Method 232

TDAScript.Connection Property 226

TDAScript.DataSet Property 226

TDAScript.Debug Property 227

TDAScript.Delimiter Property 227

TDAScript.EndLine Property 227

TDAScript.EndOffset Property 228

TDAScript.EndPos Property 228

TDAScript.ErrorOffset Method 232

TDAScript.Execute Method 233

TDAScript.ExecuteFile Method 233

TDAScript.ExecuteNext Method 233

TDAScript.ExecuteStream Method 234

TDAScript.FindMacro Method 234

Universal Data Access Components710

© 2013 Enter your company name

TDAScript.MacroByName Method 235

TDAScript.Macros Property 228

TDAScript.OnError Event 237

TDAScript.SQL Property 229

TDAScript.StartLine Property 229

TDAScript.StartOffset Property 230

TDAScript.StartPos Property 230

TDAScript.Statements Property 230

TDAStatement Class 237

TDAStatement.EndLine Property 239

TDAStatement.EndOffset Property 240

TDAStatement.EndPos Property 240

TDAStatement.Execute Method 243

TDAStatement.Omit Property 240

TDAStatement.Params Property 240

TDAStatement.Script Property 241

TDAStatement.SQL Property 241

TDAStatement.StartLine Property 242

TDAStatement.StartOffset Property 242

TDAStatement.StartPos Property 242

TDAStatements Class 243

TDAStatements.Items Property(Indexer) 244

TDATraceFlag Enumeration 256

TDATraceFlags Set 255

TDATransaction Class 425

TDATransaction.Active Property 426

TDATransaction.Commit Method 427

TDATransaction.DefaultCloseAction Property 427

TDATransaction.OnError Event 429

TDATransaction.Rollback Method 428

TDATransaction.StartTransaction Method 428

TDATransactionErrorEvent Procedure Reference
444

TDBMonitorOptions Class 252

TDBMonitorOptions.Host Property 253

TDBMonitorOptions.Port Property 253

TDBMonitorOptions.ReconnectTimeout Property
254

TDBMonitorOptions.SendTimeout Property 254

TDBObject Class 476

TErrorAction Enumeration 246

tfBlob 256

tfConnect 256

tfError 256

tfMisc 256

tfObjDestroy 256

tfParams 256

tfPool 256

tfQExecute 256

tfQFetch 256

tfQPrepare 256

tfService 256

tfStmt 256

tfTransact 256

TGetColumnDataEvent Procedure Reference 221

THttpOptions Class 180

THttpOptions.Password Property 181

THttpOptions.ProxyOptions Property 181

THttpOptions.Url Property 182

THttpOptions.Username Property 182

TLabelSet Enumeration 445

TLiteAnsiCollation Function Reference 454

TLiteCollation Function Reference 454

TLiteFunction Function Reference 455

TLiteUtils Class 513

TLiteWideCollation Function Reference 455

TLoaderProgressEvent Procedure Reference 221

TLocateExOption Enumeration 488

TLocateExOptions Set 485

TMacro Class 430

TMacro.Active Property 431

TMacro.AsDateTime Property 432

TMacro.AsFloat Property 432

TMacro.AsInteger Property 432

TMacro.AsString Property 433

TMacro.Name Property 433

TMacro.Value Property 433

TMacros Class 434

TMacros.AssignValues Method 436

TMacros.FindMacro Method 436

TMacros.IsEqual Method 437

TMacros.Items Property(Indexer) 435

TMacros.MacroByName Method 437

TMacros.Scan Method 438

TMapRule Class 169

TMapRule.DBLengthMax Property 170

TMapRule.DBLengthMin Property 170

TMapRule.DBScaleMax Property 170

TMapRule.DBScaleMin Property 171

TMapRule.DBType Property 171

TMapRule.FieldLength Property 171

TMapRule.FieldName Property 171

TMapRule.FieldScale Property 172

TMapRule.IgnoreErrors Property 172

TMemDataSet Class 490

TMemDataSet.ApplyUpdates Method 498

Index 711

© 2013 Enter your company name

TMemDataSet.CachedUpdates Property 493

TMemDataSet.CancelUpdates Method 500

TMemDataSet.CommitUpdates Method 501

TMemDataSet.DeferredPost Method 501

TMemDataSet.GetBlob Method 502

TMemDataSet.IndexFieldNames Property 494

TMemDataSet.LocalConstraints Property 495

TMemDataSet.LocalUpdate Property 495

TMemDataSet.Locate Method 503

TMemDataSet.LocateEx Method 505

TMemDataSet.OnUpdateError Event 511

TMemDataSet.OnUpdateRecord Event 512

TMemDataSet.Prepare Method 507

TMemDataSet.Prepared Property 495

TMemDataSet.RestoreUpdates Method 507

TMemDataSet.RevertRecord Method 508

TMemDataSet.SaveToXML Method 508

TMemDataSet.UnPrepare Method 509

TMemDataSet.UpdateRecordTypes Property 496

TMemDataSet.UpdateResult Method 510

TMemDataSet.UpdatesPending Property 496

TMemDataSet.UpdateStatus Method 510

TMonitorOption Enumeration 257

TMonitorOptions Set 255

TObjectType Class 476

TObjectType.AttributeByName Method 480

TObjectType.AttributeCount Property 478

TObjectType.Attributes Property(Indexer) 478

TObjectType.DataType Property 479

TObjectType.FindAttribute Method 481

TObjectType.Size Property 479

TOnErrorEvent Procedure Reference 246

TOnSQLEvent Procedure Reference 255

TPoolingOptions Class 438

TPoolingOptions.ConnectionLifetime Property 440

TPoolingOptions.MaxPoolSize Property 440

TPoolingOptions.MinPoolSize Property 440

TPoolingOptions.Validate Property 441

TProxyOptions Class 182

TProxyOptions.Hostname Property 184

TProxyOptions.Password Property 184

TProxyOptions.Port Property 184

TProxyOptions.Username Property 184

TraceFlags Property 251

Transaction Property

TCustomUniDataSet 535

TUniMetaData 576

TUniScript 681

TUniSQL 603

Transactions 67

TRefreshOption Enumeration 446

TRefreshOptions Set 444

TRetryMode Enumeration 446

TrimFixedChar Property 382

Truncate Method 471

TSharedObject Class 482

TSharedObject.AddRef Method 484

TSharedObject.RefCount Property 483

TSharedObject.Release Method 484

TSortType Enumeration 489

TUniAlerter Class 662

TUniAlerter.Connection Property 664

TUniBlob Class 545

TUniConnectDialog Class 665

TUniConnectDialog.Connection Property 668

TUniConnectDialog.DatabaseLabel Property 668

TUniConnectDialog.PortLabel Property 668

TUniConnectDialog.ProviderLabel Property 669

TUniConnection Class 547

TUniConnection.ActiveMacroValueByName Method
 559

TUniConnection.AssignConnect Method 559

TUniConnection.CommitRetaining Method 560

TUniConnection.CreateDataSet Method 560

TUniConnection.CreateSQL Method 561

TUniConnection.CreateTransaction Method 561

TUniConnection.Database Property 553

TUniConnection.Macros Property 554

TUniConnection.ParamByName Method 562

TUniConnection.Port Property 554

TUniConnection.ProviderName Property 555

TUniConnection.ReleaseSavepoint Method 562

TUniConnection.RollbackRetaining Method 563

TUniConnection.RollbackToSavepoint Method 563

TUniConnection.Savepoint Method 564

TUniConnection.SpecificOptions Property 555

TUniConnection.StartTransaction Method 565

TUniDataSource Class 566

TUniDump Class 670

TUniEncryptor Class 567

TUniLoader Class 672

TUniMacro Class 568

TUniMacro.Condition Property 569

TUniMacro.Name Property 569

TUniMacro.Value Property 570

TUniMacros Class 570

Universal Data Access Components712

© 2013 Enter your company name

TUniMetaData Class 570

TUniMetaData.Connection Property 576

TUniMetaData.Transaction Property 576

TUniParam Class 577

TUniParams Class 579

TUniProvider Class 674

TUniQuery Class 580

TUniQuery.LockMode Property 595

TUniQuery.UpdatingTable Property 595

TUniScript Class 675

TUniScript.Connection Property 679

TUniScript.DataSet Property 680

TUniScript.SpecificOptions Property 680

TUniScript.Transaction Property 681

TUniSQL Class 596

TUniSQL.BreakExec Method 605

TUniSQL.Connection Property 601

TUniSQL.CreateProcCall Method 605

TUniSQL.FindParam Method 606

TUniSQL.LastInsertId Property 601

TUniSQL.ParamByName Method 607

TUniSQL.SpecificOptions Property 602

TUniSQL.Transaction Property 603

TUniSQLMonitor Class 682

TUniStoredProc Class 607

TUniStoredProc.ExecProc Method 630

TUniStoredProc.LockMode Property 622

TUniStoredProc.PrepareSQL Method 630

TUniStoredProc.StoredProcName Property 622

TUniTable Class 631

TUniTable.LockMode Property 645

TUniTable.OrderFields Property 646

TUniTable.PrepareSQL Method 654

TUniTable.TableName Property 646

TUniTransaction Class 654

TUniTransaction.AddConnection Method 658

TUniTransaction.Connections Property(Indexer)
656

TUniTransaction.ConnectionsCount Property 657

TUniTransaction.IsolationLevel Property 657

TUniTransaction.RemoveConnection Method 659

TUniUpdateSQL Class 659

TUpdateExecuteEvent Procedure Reference 444

TUpdateRecKind Enumeration 489

TUpdateRecKinds Set 485

TVirtualTable Class 684

TVirtualTable.AddField Method 692

TVirtualTable.Assign Method 693

TVirtualTable.Clear Method 693

TVirtualTable.DeleteField Method 694

TVirtualTable.DeleteFields Method 694

TVirtualTable.LoadFromFile Method 695

TVirtualTable.LoadFromStream Method 695

TVirtualTable.Options Property 689

TVirtualTable.SaveToFile Method 696

TVirtualTable.SaveToStream Method 696

TVirtualTableOption Enumeration 697

TVirtualTableOptions Set 697

- U -
ukDelete 489

ukInsert 489

ukUpdate 489

Uni Unit Members 515

UniAlerter Unit Members 662

UniDAC and Adaptive Server Enterprise 97

UniDAC and Advantage Database Server 99

UniDAC and DB2 101

UniDAC and DBF 103

UniDAC and InterBase/Firebird 105

UniDAC and Microsoft Access 110

UniDAC and MySQL 112

UniDAC and NexusDB 117

UniDAC and ODBC 124

UniDAC and Oracle 126

UniDAC and PostgreSQL 120

UniDAC and SQL Server 136

UniDAC and SQLite 133

UniDAC Basics 10

UniDacVcl Unit Members 664

UniDACVersion Constant 661

UniDataAdapter Class 452

UniDirectional Property 319

UniDump Unit Members 669

Unified SQL 79

UniLoader Unit Members 671

UniProvider Unit Members 673

UniScript Unit Members 674

UniSQLMonitor Unit Members 681

UnLock Method 339

UnPrepare Method

TCustomDASQL 358

TMemDataSet 509

Update Method 451

UpdateAllFields Property 383

Index 713

© 2013 Enter your company name

UpdateBatchSize Property 383

UpdateObject Property 535

UpdateRecordTypes Property 496

UpdateResult Method 510

UpdatesPending Property 496

UpdateStatus Method 510

UpdateTransaction Property 536

Updating data with UniDAC 59

UpdatingTable Property 595

Url Property 182

Username Property

TCustomDAConnection 278

THttpOptions 182

TProxyOptions 184

UsernameLabel Property 269

Using Several DAC Products in One IDE 85

- V -
Validate Property 441

Value Property

TDAParam 418

TMacro 433

TUniMacro 570

VirtualTable Unit Members 683

voPersistentData 697

voStored 697

- W -
WaitExecuting Method 358

What's New 28

Working in an Unstable Network 68

Write Method 471

Writing GUI Applications with UniDAC 91

	Overview
	Editions
	Getting Started
	UniDAC Basics
	Features
	What's New
	Demo Projects
	Component List
	Requirements
	Compatibility
	Deployment
	Licensing and Subscriptions
	Getting Support
	Using UniDAC
	Connecting to Database
	Data Types
	Updating data with UniDAC
	Master/Detail Relationships
	Network Tunneling
	Executing Stored Procedures
	Transactions
	Working in an Unstable Network
	Disconnected Mode
	Data Type Mapping
	Data Encryption
	Increasing Performance
	Macros
	Unified SQL
	Using Several DAC Products in One IDE
	DataSet Manager
	DBMonitor
	Writing GUI Applications with UniDAC
	Compatibility with Previous Versions
	Migration Wizard
	64-bit Development with Embarcadero RAD Studio XE2

	Provider-Specific Notes
	UniDAC and Adaptive Server Enterprise
	UniDAC and Advantage Database Server
	UniDAC and DB2
	UniDAC and DBF
	UniDAC and InterBase/Firebird
	UniDAC and Microsoft Access
	UniDAC and MySQL
	UniDAC and NexusDB
	UniDAC and PostgreSQL
	UniDAC and ODBC
	UniDAC and Oracle
	UniDAC and SQLite
	UniDAC and SQL Server
	Database Specific Aspects of 64-bit Development

	Reference
	CRAccess
	Classes
	TCRCursor Class
	Members

	Types
	TBeforeFetchProc Procedure Reference

	Enumerations
	TCRIsolationLevel Enumeration
	TCRTransactionAction Enumeration

	CRBatchMove
	Classes
	TCRBatchMove Class
	Members
	Properties
	AbortOnKeyViol Property
	AbortOnProblem Property
	ChangedCount Property
	CommitCount Property
	Destination Property
	FieldMappingMode Property
	KeyViolCount Property
	Mappings Property
	Mode Property
	MovedCount Property
	ProblemCount Property
	RecordCount Property
	Source Property

	Methods
	Execute Method

	Events
	OnBatchMoveProgress Event

	Types
	TCRBatchMoveProgressEvent Procedure Reference

	Enumerations
	TCRBatchMode Enumeration
	TCRFieldMappingMode Enumeration

	CRDataTypeMap
	Classes
	EDataMappingError Class
	Members

	EDataTypeMappingError Class
	Members

	EInvalidDBTypeMapping Class
	Members

	EInvalidFieldTypeMapping Class
	Members

	EUnsupportedDataTypeMapping Class
	Members

	TMapRule Class
	Members
	Properties
	DBLengthMax Property
	DBLengthMin Property
	DBScaleMax Property
	DBScaleMin Property
	DBType Property
	FieldLength Property
	FieldName Property
	FieldScale Property
	IgnoreErrors Property

	CREncryption
	Classes
	TCREncryptor Class
	Members
	Properties
	DataHeader Property
	EncryptionAlgorithm Property
	HashAlgorithm Property
	InvalidHashAction Property
	Password Property

	Methods
	SetKey Method

	Enumerations
	TCREncDataHeader Enumeration
	TCREncryptionAlgorithm Enumeration
	TCRHashAlgorithm Enumeration
	TCRInvalidHashAction Enumeration

	CRVio
	Classes
	THttpOptions Class
	Members
	Properties
	Password Property
	ProxyOptions Property
	Url Property
	Username Property

	TProxyOptions Class
	Members
	Properties
	Hostname Property
	Password Property
	Port Property
	Username Property

	DAAlerter
	Classes
	TDAAlerter Class
	Members
	Properties
	Active Property
	AutoRegister Property
	Connection Property

	Methods
	SendEvent Method
	Start Method
	Stop Method

	Events
	OnError Event

	Types
	TAlerterErrorEvent Procedure Reference
	TAlerterEventEvent Procedure Reference

	DADump
	Classes
	TDADump Class
	Members
	Properties
	Connection Property
	Debug Property
	Options Property
	SQL Property
	TableNames Property

	Methods
	Backup Method
	BackupQuery Method
	BackupToFile Method
	BackupToStream Method
	Restore Method
	RestoreFromFile Method
	RestoreFromStream Method

	Events
	OnBackupProgress Event
	OnError Event
	OnRestoreProgress Event

	TDADumpOptions Class
	Members
	Properties
	AddDrop Property
	GenerateHeader Property
	QuoteNames Property

	Types
	TDABackupProgressEvent Procedure Reference
	TDARestoreProgressEvent Procedure Reference

	DALoader
	Classes
	TDAColumn Class
	Members
	Properties
	FieldType Property
	Name Property

	TDAColumns Class
	Members
	Properties
	Items Property(Indexer)

	TDALoader Class
	Members
	Properties
	Columns Property
	Connection Property
	TableName Property

	Methods
	CreateColumns Method
	Load Method
	LoadFromDataSet Method
	PutColumnData Method
	PutColumnData Method
	PutColumnData Method

	Events
	OnGetColumnData Event
	OnProgress Event
	OnPutData Event

	Types
	TDAPutDataEvent Procedure Reference
	TGetColumnDataEvent Procedure Reference
	TLoaderProgressEvent Procedure Reference

	DAScript
	Classes
	TDAScript Class
	Members
	Properties
	Connection Property
	DataSet Property
	Debug Property
	Delimiter Property
	EndLine Property
	EndOffset Property
	EndPos Property
	Macros Property
	SQL Property
	StartLine Property
	StartOffset Property
	StartPos Property
	Statements Property

	Methods
	BreakExec Method
	ErrorOffset Method
	Execute Method
	ExecuteFile Method
	ExecuteNext Method
	ExecuteStream Method
	FindMacro Method
	MacroByName Method

	Events
	AfterExecute Event
	BeforeExecute Event
	OnError Event

	TDAStatement Class
	Members
	Properties
	EndLine Property
	EndOffset Property
	EndPos Property
	Omit Property
	Params Property
	Script Property
	SQL Property
	StartLine Property
	StartOffset Property
	StartPos Property

	Methods
	Execute Method

	TDAStatements Class
	Members
	Properties
	Items Property(Indexer)

	Types
	TAfterStatementExecuteEvent Procedure Reference
	TBeforeStatementExecuteEvent Procedure Reference
	TOnErrorEvent Procedure Reference

	Enumerations
	TErrorAction Enumeration

	DASQLMonitor
	Classes
	TCustomDASQLMonitor Class
	Members
	Properties
	Active Property
	DBMonitorOptions Property
	Options Property
	TraceFlags Property

	Events
	OnSQL Event

	TDBMonitorOptions Class
	Members
	Properties
	Host Property
	Port Property
	ReconnectTimeout Property
	SendTimeout Property

	Types
	TDATraceFlags Set
	TMonitorOptions Set
	TOnSQLEvent Procedure Reference

	Enumerations
	TDATraceFlag Enumeration
	TMonitorOption Enumeration

	DBAccess
	Classes
	EDAError Class
	Members
	Properties
	Component Property
	ErrorCode Property

	TCRDataSource Class
	Members

	TCustomConnectDialog Class
	Members
	Properties
	CancelButton Property
	Caption Property
	ConnectButton Property
	DialogClass Property
	LabelSet Property
	PasswordLabel Property
	Retries Property
	SavePassword Property
	ServerLabel Property
	StoreLogInfo Property
	UsernameLabel Property

	Methods
	Execute Method
	GetServerList Method

	TCustomDAConnection Class
	Members
	Properties
	ConnectDialog Property
	ConvertEOL Property
	InTransaction Property
	LoginPrompt Property
	Options Property
	Password Property
	Pooling Property
	PoolingOptions Property
	Server Property
	Username Property

	Methods
	ApplyUpdates Method
	ApplyUpdates Method
	ApplyUpdates Method

	Commit Method
	Connect Method
	CreateDataSet Method
	CreateSQL Method
	Disconnect Method
	ExecProc Method
	ExecProcEx Method
	ExecSQL Method
	ExecSQLEx Method
	GetDatabaseNames Method
	GetStoredProcNames Method
	GetTableNames Method
	MonitorMessage Method
	RemoveFromPool Method
	Rollback Method
	StartTransaction Method

	Events
	OnConnectionLost Event
	OnError Event

	TCustomDADataSet Class
	Members
	Properties
	BaseSQL Property
	Connection Property
	Debug Property
	DetailFields Property
	Disconnected Property
	Encryption Property
	FetchRows Property
	FilterSQL Property
	FinalSQL Property
	IsQuery Property
	KeyFields Property
	MacroCount Property
	Macros Property
	MasterFields Property
	MasterSource Property
	Options Property
	ParamCheck Property
	ParamCount Property
	Params Property
	ReadOnly Property
	RefreshOptions Property
	RowsAffected Property
	SQL Property
	SQLDelete Property
	SQLInsert Property
	SQLLock Property
	SQLRefresh Property
	SQLUpdate Property
	UniDirectional Property

	Methods
	AddWhere Method
	BreakExec Method
	CreateBlobStream Method
	DeleteWhere Method
	Execute Method
	Executing Method
	Fetched Method
	Fetching Method
	FetchingAll Method
	FindKey Method
	FindMacro Method
	FindNearest Method
	FindParam Method
	GetDataType Method
	GetFieldObject Method
	GetFieldPrecision Method
	GetFieldScale Method
	GetOrderBy Method
	GotoCurrent Method
	Lock Method
	MacroByName Method
	ParamByName Method
	Prepare Method
	RefreshRecord Method
	RestoreSQL Method
	Resync Method
	SaveSQL Method
	SetOrderBy Method
	SQLSaved Method
	UnLock Method

	Events
	AfterExecute Event
	AfterFetch Event
	AfterUpdateExecute Event
	BeforeFetch Event
	BeforeUpdateExecute Event

	TCustomDASQL Class
	Members
	Properties
	ChangeCursor Property
	Connection Property
	Debug Property
	FinalSQL Property
	MacroCount Property
	Macros Property
	ParamCheck Property
	ParamCount Property
	Params Property
	ParamValues Property(Indexer)
	Prepared Property
	RowsAffected Property
	SQL Property

	Methods
	Execute Method
	Execute Method
	Execute Method

	Executing Method
	FindMacro Method
	FindParam Method
	MacroByName Method
	ParamByName Method
	Prepare Method
	UnPrepare Method
	WaitExecuting Method

	Events
	AfterExecute Event

	TCustomDAUpdateSQL Class
	Members
	Properties
	DataSet Property
	DeleteObject Property
	DeleteSQL Property
	InsertObject Property
	InsertSQL Property
	LockObject Property
	LockSQL Property
	ModifyObject Property
	ModifySQL Property
	RefreshObject Property
	RefreshSQL Property
	SQL Property(Indexer)

	Methods
	Apply Method
	ExecSQL Method

	TDAConnectionOptions Class
	Members
	Properties
	DefaultSortType Property
	DisconnectedMode Property
	KeepDesignConnected Property
	LocalFailover Property

	TDADataSetOptions Class
	Members
	Properties
	AutoPrepare Property
	CacheCalcFields Property
	CompressBlobMode Property
	DefaultValues Property
	DetailDelay Property
	FieldsOrigin Property
	FlatBuffers Property
	LocalMasterDetail Property
	LongStrings Property
	NumberRange Property
	QueryRecCount Property
	QuoteNames Property
	RemoveOnRefresh Property
	RequiredFields Property
	ReturnParams Property
	SetFieldsReadOnly Property
	StrictUpdate Property
	TrimFixedChar Property
	UpdateAllFields Property
	UpdateBatchSize Property

	TDAEncryptionOptions Class
	Members
	Properties
	Encryptor Property
	Fields Property

	TDAMapRule Class
	Members
	Properties
	DBLengthMax Property
	DBLengthMin Property
	DBScaleMax Property
	DBScaleMin Property
	DBType Property
	FieldLength Property
	FieldName Property
	FieldScale Property
	FieldType Property
	IgnoreErrors Property

	TDAMapRules Class
	Members
	Methods
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method

	AddFieldNameRule Method
	AddFieldNameRule Method
	AddFieldNameRule Method
	AddFieldNameRule Method

	AddRule Method

	TDAMetaData Class
	Members
	Properties
	Connection Property
	MetaDataKind Property
	Restrictions Property

	Methods
	GetMetaDataKinds Method
	GetRestrictions Method

	TDAParam Class
	Members
	Properties
	AsBlob Property
	AsBlobRef Property
	AsFloat Property
	AsInteger Property
	AsLargeInt Property
	AsMemo Property
	AsMemoRef Property
	AsSQLTimeStamp Property
	AsString Property
	AsWideString Property
	DataType Property
	IsNull Property
	ParamType Property
	Size Property
	Value Property

	Methods
	AssignField Method
	AssignFieldValue Method
	LoadFromFile Method
	LoadFromStream Method
	SetBlobData Method
	SetBlobData Method
	SetBlobData Method

	TDAParams Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	FindParam Method
	ParamByName Method

	TDATransaction Class
	Members
	Properties
	Active Property
	DefaultCloseAction Property

	Methods
	Commit Method
	Rollback Method
	StartTransaction Method

	Events
	OnError Event

	TMacro Class
	Members
	Properties
	Active Property
	AsDateTime Property
	AsFloat Property
	AsInteger Property
	AsString Property
	Name Property
	Value Property

	TMacros Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	AssignValues Method

	TPoolingOptions Class
	Members

	Types
	TAfterExecuteEvent Procedure Reference
	Enumerations
	TLabelSet Enumeration
	Variables
	ChangeCursor Variable

	Devart.Dac.DataAdapter
	Classes
	DADataAdapter Class
	Members

	Devart.UniDac.DataAdapter
	Classes
	UniDataAdapter Class
	Members

	LiteCollation
	Types
	TLiteAnsiCollation Function Reference

	LiteFunction
	Types
	TLiteFunction Function Reference

	MemData
	Classes
	TAttribute Class
	Members
	TBlob Class
	Members
	TCompressedBlob Class
	Members
	TDBObject Class
	Members
	TObjectType Class
	Members
	TSharedObject Class
	Members

	Types
	TLocateExOptions Set
	Enumerations
	TCompressBlobMode Enumeration

	MemDS
	Classes
	TMemDataSet Class
	Members

	SQLiteUniProvider
	Classes
	TLiteUtils Class
	Members

	Uni
	Classes
	TCustomUniDataSet Class
	Members
	Properties
	DMLRefresh Property
	LastInsertId Property
	Options Property
	Params Property
	SpecificOptions Property
	Transaction Property
	UpdateObject Property
	UpdateTransaction Property
	Methods
	CreateProcCall Method
	FindParam Method
	OpenNext Method
	ParamByName Method

	TUniBlob Class
	Members
	TUniConnection Class
	Members
	Properties
	Database Property
	Macros Property
	Port Property
	ProviderName Property
	SpecificOptions Property
	Methods
	ActiveMacroValueByName Method
	AssignConnect Method
	CommitRetaining Method
	CreateDataSet Method
	CreateSQL Method
	CreateTransaction Method
	ParamByName Method
	ReleaseSavepoint Method
	RollbackRetaining Method
	RollbackToSavepoint Method
	Savepoint Method
	StartTransaction Method
	StartTransaction Method
	StartTransaction Method

	TUniDataSource Class
	Members
	TUniEncryptor Class
	Members
	TUniMacro Class
	Members
	Properties
	Condition Property
	Name Property
	Value Property
	TUniMacros Class
	Members
	TUniMetaData Class
	Members
	Properties
	Connection Property
	Transaction Property
	TUniParam Class
	Members
	TUniParams Class
	Members
	TUniQuery Class
	Members
	Properties
	LockMode Property
	UpdatingTable Property
	TUniSQL Class
	Members
	Properties
	Connection Property
	LastInsertId Property
	SpecificOptions Property
	Transaction Property
	Methods
	BreakExec Method
	CreateProcCall Method
	FindParam Method
	ParamByName Method
	TUniStoredProc Class
	Members
	Properties
	LockMode Property
	StoredProcName Property
	Methods
	ExecProc Method
	PrepareSQL Method
	TUniTable Class
	Members
	Properties
	LockMode Property
	OrderFields Property
	TableName Property
	Methods
	PrepareSQL Method
	TUniTransaction Class
	Members
	Properties
	Connections Property(Indexer)
	ConnectionsCount Property
	IsolationLevel Property
	Methods
	AddConnection Method
	RemoveConnection Method
	TUniUpdateSQL Class
	Members

	Constants
	UniDACVersion Constant

	UniAlerter
	Classes
	TUniAlerter Class
	Members
	Properties
	Connection Property
	UniDacVcl
	Classes
	TUniConnectDialog Class
	Members
	Properties
	Connection Property
	DatabaseLabel Property
	PortLabel Property
	ProviderLabel Property
	UniDump
	Classes
	TUniDump Class
	Members
	UniLoader
	Classes
	TUniLoader Class
	Members
	UniProvider
	Classes
	TUniProvider Class
	Members
	UniScript
	Classes
	TUniScript Class
	Members
	Properties
	Connection Property
	DataSet Property
	SpecificOptions Property
	Transaction Property
	UniSQLMonitor
	Classes
	TUniSQLMonitor Class
	Members
	VirtualTable
	Classes
	TVirtualTable Class
	Members
	Properties
	Options Property
	Methods
	AddField Method
	Assign Method
	Clear Method
	DeleteField Method
	DeleteFields Method
	LoadFromFile Method
	LoadFromStream Method
	SaveToFile Method
	SaveToStream Method
	Types
	TVirtualTableOptions Set
	Enumerations
	TVirtualTableOption Enumeration

